Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4INCLParticleTable.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Alain Boudard, CEA-Saclay, France
28// Joseph Cugnon, University of Liege, Belgium
29// Jean-Christophe David, CEA-Saclay, France
30// Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31// Sylvie Leray, CEA-Saclay, France
32// Davide Mancusi, CEA-Saclay, France
33//
34#define INCLXX_IN_GEANT4_MODE 1
35
36#include "globals.hh"
37
40#include <algorithm>
41// #include <cassert>
42#include <cmath>
43#include <cctype>
44#include <sstream>
45#ifdef INCLXX_IN_GEANT4_MODE
46#include "G4SystemOfUnits.hh"
47#endif
48
49#ifdef INCLXX_IN_GEANT4_MODE
51#include "G4SystemOfUnits.hh"
52#endif
53
54namespace G4INCL {
55
56 namespace ParticleTable {
57
58 namespace {
59
60 /// \brief Static instance of the NaturalIsotopicAbundances class
61 const NaturalIsotopicDistributions *theNaturalIsotopicDistributions = NULL;
62
63 const G4double theINCLNucleonMass = 938.2796;
64 const G4double theINCLPionMass = 138.0;
65 const G4double theINCLLambdaMass = 1115.683;
66// const G4double theINCLSigmaMass = 1197.45;
67// const G4double theINCLKaonMass = 497.614;
68 const G4double theINCLEtaMass = 547.862;
69 const G4double theINCLOmegaMass = 782.65;
70 const G4double theINCLEtaPrimeMass = 957.78;
71 const G4double theINCLPhotonMass = 0.0;
72 G4ThreadLocal G4double protonMass = 0.0;
73 G4ThreadLocal G4double neutronMass = 0.0;
74 G4ThreadLocal G4double piPlusMass = 0.0;
75 G4ThreadLocal G4double piMinusMass = 0.0;
76 G4ThreadLocal G4double piZeroMass = 0.0;
77 G4ThreadLocal G4double SigmaPlusMass = 0.0;
78 G4ThreadLocal G4double SigmaZeroMass = 0.0;
79 G4ThreadLocal G4double SigmaMinusMass = 0.0;
80 G4ThreadLocal G4double LambdaMass = 0.0;
81 G4ThreadLocal G4double KPlusMass = 0.0;
82 G4ThreadLocal G4double KZeroMass = 0.0;
83 G4ThreadLocal G4double KZeroBarMass = 0.0;
84 G4ThreadLocal G4double KShortMass = 0.0;
85 G4ThreadLocal G4double KLongMass = 0.0;
86 G4ThreadLocal G4double KMinusMass = 0.0;
87 G4ThreadLocal G4double etaMass = 0.0;
88 G4ThreadLocal G4double omegaMass = 0.0;
89 G4ThreadLocal G4double etaPrimeMass = 0.0;
90 G4ThreadLocal G4double photonMass = 0.0;
91
92 // Hard-coded values of the real particle masses (MeV/c^2)
93 G4ThreadLocal G4double theRealProtonMass = 938.27203;
94 G4ThreadLocal G4double theRealNeutronMass = 939.56536;
95 G4ThreadLocal G4double theRealChargedPiMass = 139.57018;
96 G4ThreadLocal G4double theRealPiZeroMass = 134.9766;
97 G4ThreadLocal G4double theRealLambdaMass = 1115.683;
98 G4ThreadLocal G4double theRealSigmaPlusMass = 1189.37;
99 G4ThreadLocal G4double theRealSigmaZeroMass = 1192.64;
100 G4ThreadLocal G4double theRealSigmaMinusMass = 1197.45;
101 G4ThreadLocal G4double theRealChargedKaonMass = 493.677;
102 G4ThreadLocal G4double theRealNeutralKaonMass = 497.614;
103 G4ThreadLocal G4double theRealEtaMass = 547.862;
104 G4ThreadLocal G4double theRealOmegaMass = 782.65;
105 G4ThreadLocal G4double theRealEtaPrimeMass = 957.78;
106 G4ThreadLocal G4double theRealPhotonMass = 0.0;
107
108 // Width (second)
109 const G4double theChargedPiWidth = 2.6033e-08;
110 const G4double thePiZeroWidth = 8.52e-17;
111 const G4double theEtaWidth = 5.025e-19; // 1.31 keV
112 const G4double theOmegaWidth = 7.7528e-23; // 8.49 MeV
113 const G4double theEtaPrimeWidth = 3.3243e-21; // 0.198 MeV
114 const G4double theChargedKaonWidth = 1.238e-08;
115 const G4double theKShortWidth = 8.954e-11;
116 const G4double theKLongWidth = 5.116e-08;
117 const G4double theLambdaWidth = 2.632e-10;
118 const G4double theSigmaPlusWidth = 8.018e-11;
119 const G4double theSigmaZeroWidth = 7.4e-20;
120 const G4double theSigmaMinusWidth = 1.479e-10;
121 G4ThreadLocal G4double piPlusWidth = 0.0;
122 G4ThreadLocal G4double piMinusWidth = 0.0;
123 G4ThreadLocal G4double piZeroWidth = 0.0;
124 G4ThreadLocal G4double etaWidth = 0.0;
125 G4ThreadLocal G4double omegaWidth = 0.0;
126 G4ThreadLocal G4double etaPrimeWidth = 0.0;
127 G4ThreadLocal G4double LambdaWidth = 0.0;
128 G4ThreadLocal G4double SigmaPlusWidth = 0.0;
129 G4ThreadLocal G4double SigmaZeroWidth = 0.0;
130 G4ThreadLocal G4double SigmaMinusWidth = 0.0;
131 G4ThreadLocal G4double KPlusWidth = 0.0;
132 G4ThreadLocal G4double KMinusWidth = 0.0;
133 G4ThreadLocal G4double KShortWidth = 0.0;
134 G4ThreadLocal G4double KLongWidth = 0.0;
135
136
137 const G4int mediumNucleiTableSize = 30;
138
139 const G4double mediumDiffuseness[mediumNucleiTableSize] =
140 {0.0,0.0,0.0,0.0,0.0,1.78,1.77,1.77,1.69,1.71,
141 1.69,1.72,1.635,1.730,1.81,1.833,1.798,
142 1.93,0.567,0.571, 0.560,0.549,0.550,0.551,
143 0.580,0.575,0.569,0.537,0.0,0.0};
144 const G4double mediumRadius[mediumNucleiTableSize] =
145 {0.0,0.0,0.0,0.0,0.0,0.334,0.327,0.479,0.631,0.838,
146 0.811,0.84,1.403,1.335,1.25,1.544,1.498,1.57,
147 2.58,2.77, 2.775,2.78,2.88,2.98,3.22,3.03,2.84,
148 3.14,0.0,0.0};
149
150 const G4double positionRMS[clusterTableZSize][clusterTableASize] = {
151 /* A= 0 1 2 3 4 5 6 7 8 9 10 11 12 */
152 /* Z=0 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0},
153 /* Z=1 */ {-1.0, -1.0, 2.10, 1.80, 1.70, 1.83, 2.60, 2.50, -1.0, -1.0, -1.0, -1.0, -1.0},
154 /* Z=2 */ {-1.0, -1.0, -1.0, 1.80, 1.68, 1.70, 2.60, 2.50, 2.50, 2.50, 2.50, -1.0, -1.0},
155 /* Z=3 */ {-1.0, -1.0, -1.0, -1.0, 1.70, 1.83, 2.56, 2.40, 2.50, 2.50, 2.50, 2.50, 2.50},
156 /* Z=4 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 2.60, 2.50, 2.50, 2.51, 2.50, 2.50, 2.50},
157 /* Z=5 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 2.50, 2.50, 2.50, 2.50, 2.45, 2.40, 2.50},
158 /* Z=6 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 2.50, 2.50, 2.50, 2.50, 2.47},
159 /* Z=7 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 2.50, 2.50, 2.50},
160 /* Z=8 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 2.50}
161 };
162
163 const G4double momentumRMS[clusterTableZSize][clusterTableASize] = {
164 /* A= 0 1 2 3 4 5 6 7 8 9 10 11 12 */
165 /* Z=0 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0},
166 /* Z=1 */ {-1.0, -1.0, 77.0, 110., 153., 100., 100., 100., -1.0, -1.0, -1.0, -1.0, -1.0},
167 /* Z=2 */ {-1.0, -1.0, -1.0, 110., 153., 100., 100., 100., 100., 100., 100., -1.0, -1.0},
168 /* Z=3 */ {-1.0, -1.0, -1.0, -1.0, 153., 100., 100., 100., 100., 100., 100., 100., 100.},
169 /* Z=4 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 100., 100., 100., 100., 100., 100., 100.},
170 /* Z=5 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 100., 100., 100., 100., 100., 100., 100.},
171 /* Z=6 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 100., 100., 100., 100., 100.},
172 /* Z=7 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 100., 100., 100.},
173 /* Z=8 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 100.}
174 };
175
176 const G4int elementTableSize = 113; // up to Cn
177
178 /// \brief Table of chemical element names
179 const std::string elementTable[elementTableSize] = {
180 "",
181 "H",
182 "He",
183 "Li",
184 "Be",
185 "B",
186 "C",
187 "N",
188 "O",
189 "F",
190 "Ne",
191 "Na",
192 "Mg",
193 "Al",
194 "Si",
195 "P",
196 "S",
197 "Cl",
198 "Ar",
199 "K",
200 "Ca",
201 "Sc",
202 "Ti",
203 "V",
204 "Cr",
205 "Mn",
206 "Fe",
207 "Co",
208 "Ni",
209 "Cu",
210 "Zn",
211 "Ga",
212 "Ge",
213 "As",
214 "Se",
215 "Br",
216 "Kr",
217 "Rb",
218 "Sr",
219 "Y",
220 "Zr",
221 "Nb",
222 "Mo",
223 "Tc",
224 "Ru",
225 "Rh",
226 "Pd",
227 "Ag",
228 "Cd",
229 "In",
230 "Sn",
231 "Sb",
232 "Te",
233 "I",
234 "Xe",
235 "Cs",
236 "Ba",
237 "La",
238 "Ce",
239 "Pr",
240 "Nd",
241 "Pm",
242 "Sm",
243 "Eu",
244 "Gd",
245 "Tb",
246 "Dy",
247 "Ho",
248 "Er",
249 "Tm",
250 "Yb",
251 "Lu",
252 "Hf",
253 "Ta",
254 "W",
255 "Re",
256 "Os",
257 "Ir",
258 "Pt",
259 "Au",
260 "Hg",
261 "Tl",
262 "Pb",
263 "Bi",
264 "Po",
265 "At",
266 "Rn",
267 "Fr",
268 "Ra",
269 "Ac",
270 "Th",
271 "Pa",
272 "U",
273 "Np",
274 "Pu",
275 "Am",
276 "Cm",
277 "Bk",
278 "Cf",
279 "Es",
280 "Fm",
281 "Md",
282 "No",
283 "Lr",
284 "Rf",
285 "Db",
286 "Sg",
287 "Bh",
288 "Hs",
289 "Mt",
290 "Ds",
291 "Rg",
292 "Cn"
293 };
294
295 /// \brief Digit names to compose IUPAC element names
296 const std::string elementIUPACDigits = "nubtqphsoe";
297
298#define INCL_DEFAULT_SEPARATION_ENERGY 6.83
299 const G4double theINCLProtonSeparationEnergy = INCL_DEFAULT_SEPARATION_ENERGY;
300 const G4double theINCLNeutronSeparationEnergy = INCL_DEFAULT_SEPARATION_ENERGY;
301 const G4double theINCLLambdaSeparationEnergy = INCL_DEFAULT_SEPARATION_ENERGY;
303 G4ThreadLocal G4double neutronSeparationEnergy = INCL_DEFAULT_SEPARATION_ENERGY;
305#undef INCL_DEFAULT_SEPARATION_ENERGY
306
307 G4ThreadLocal G4double rpCorrelationCoefficient[UnknownParticle];
308
309 G4ThreadLocal G4double neutronSkin = 0.0;
310 G4ThreadLocal G4double neutronHalo = 0.0;
311
312#ifdef INCLXX_IN_GEANT4_MODE
313 G4ThreadLocal G4IonTable *theG4IonTable;
314#endif
315
316 /// \brief Default value for constant Fermi momentum
317 G4ThreadLocal G4double constantFermiMomentum = 0.0;
318
319 /// \brief Transform a IUPAC char to an char representing an integer digit
320 char iupacToInt(char c) {
321 return (char)(((G4int)'0')+elementIUPACDigits.find(c));
322 }
323
324 /// \brief Transform an integer digit (represented by a char) to a IUPAC char
325 char intToIUPAC(char n) { return elementIUPACDigits.at(n); }
326
327 /// \brief Get the singleton instance of the natural isotopic distributions
328 const NaturalIsotopicDistributions *getNaturalIsotopicDistributions() {
329 if(!theNaturalIsotopicDistributions)
330 theNaturalIsotopicDistributions = new NaturalIsotopicDistributions;
331 return theNaturalIsotopicDistributions;
332 }
333
334 } // namespace
335
336 void initialize(Config const * const theConfig /*=0*/) {
337 protonMass = theINCLNucleonMass;
338 neutronMass = theINCLNucleonMass;
339 piPlusMass = theINCLPionMass;
340 piMinusMass = theINCLPionMass;
341 piZeroMass = theINCLPionMass;
342 /*
343 SigmaPlusMass = theINCLSigmaMass;
344 SigmaMinusMass = theINCLSigmaMass;
345 SigmaZeroMass = theINCLSigmaMass;
346 LambdaMass = theINCLLambdaMass;
347 KPlusMass = theINCLKaonMass;
348 KZeroMass = theINCLKaonMass;
349 KZeroBarMass = theINCLKaonMass;
350 KShortMass = theINCLKaonMass;
351 KLongMass = theINCLKaonMass;
352 KMinusMass = theINCLKaonMass;
353 */
354 SigmaPlusMass = theRealSigmaPlusMass;
355 SigmaMinusMass = theRealSigmaMinusMass;
356 SigmaZeroMass = theRealSigmaZeroMass;
357 LambdaMass = theINCLLambdaMass;
358 KPlusMass = theRealChargedKaonMass;
359 KZeroMass = theRealNeutralKaonMass;
360 KZeroBarMass = theRealNeutralKaonMass;
361 KShortMass = theRealNeutralKaonMass;
362 KLongMass = theRealNeutralKaonMass;
363 KMinusMass = theRealChargedKaonMass;
364
365 etaMass = theINCLEtaMass;
366 omegaMass = theINCLOmegaMass;
367 etaPrimeMass = theINCLEtaPrimeMass;
368 photonMass = theINCLPhotonMass;
369 if(theConfig && theConfig->getUseRealMasses()) {
372 } else {
375 }
376
377#ifndef INCLXX_IN_GEANT4_MODE
378 std::string dataFilePath;
379 if(theConfig)
380 dataFilePath = theConfig->getINCLXXDataFilePath();
381 NuclearMassTable::initialize(dataFilePath, getRealMass(Proton), getRealMass(Neutron));
382#endif
383
384#ifdef INCLXX_IN_GEANT4_MODE
386 theG4IonTable = theG4ParticleTable->GetIonTable();
387 theRealProtonMass = theG4ParticleTable->FindParticle("proton")->GetPDGMass() / MeV;
388 theRealNeutronMass = theG4ParticleTable->FindParticle("neutron")->GetPDGMass() / MeV;
389 theRealChargedPiMass = theG4ParticleTable->FindParticle("pi+")->GetPDGMass() / MeV;
390 theRealPiZeroMass = theG4ParticleTable->FindParticle("pi0")->GetPDGMass() / MeV;
391 theRealEtaMass = theG4ParticleTable->FindParticle("eta")->GetPDGMass() / MeV;
392 theRealOmegaMass = theG4ParticleTable->FindParticle("omega")->GetPDGMass() / MeV;
393 theRealEtaPrimeMass = theG4ParticleTable->FindParticle("eta_prime")->GetPDGMass() / MeV;
394 theRealPhotonMass = theG4ParticleTable->FindParticle("gamma")->GetPDGMass() / MeV;
395 theRealSigmaPlusMass = theG4ParticleTable->FindParticle("sigma+")->GetPDGMass() / MeV;
396 theRealSigmaZeroMass = theG4ParticleTable->FindParticle("sigma0")->GetPDGMass() / MeV;
397 theRealSigmaMinusMass = theG4ParticleTable->FindParticle("sigma-")->GetPDGMass() / MeV;
398 theRealLambdaMass = theG4ParticleTable->FindParticle("lambda")->GetPDGMass() / MeV;
399 theRealChargedKaonMass = theG4ParticleTable->FindParticle("kaon+")->GetPDGMass() / MeV;
400 theRealNeutralKaonMass = theG4ParticleTable->FindParticle("kaon0")->GetPDGMass() / MeV;
401#endif
402
403 minDeltaMass = theRealNeutronMass + theRealChargedPiMass + 0.5;
406
407 piPlusWidth = theChargedPiWidth;
408 piMinusWidth = theChargedPiWidth;
409 piZeroWidth = thePiZeroWidth;
410 etaWidth = theEtaWidth;
411 omegaWidth = theOmegaWidth;
412 etaPrimeWidth = theEtaPrimeWidth;
413
414 SigmaMinusWidth = theSigmaMinusWidth;
415 SigmaPlusWidth = theSigmaPlusWidth;
416 SigmaZeroWidth = theSigmaZeroWidth;
417 LambdaWidth = theLambdaWidth;
418 KPlusWidth = theChargedKaonWidth;
419 KMinusWidth = theChargedKaonWidth;
420 KShortWidth = theKShortWidth;
421 KLongWidth = theKLongWidth;
422
423 // Initialise HFB tables
424#ifdef INCLXX_IN_GEANT4_MODE
426#else
427 HFB::initialize(dataFilePath);
428#endif
429
430 // Initialise the separation-energy function
431 if(!theConfig || theConfig->getSeparationEnergyType()==INCLSeparationEnergy)
433 else if(theConfig->getSeparationEnergyType()==RealSeparationEnergy)
437 else {
438 INCL_FATAL("Unrecognized separation-energy type in ParticleTable initialization: " << theConfig->getSeparationEnergyType() << '\n');
439 return;
440 }
441
442 // Initialise the Fermi-momentum function
443 if(!theConfig || theConfig->getFermiMomentumType()==ConstantFermiMomentum) {
445 if(theConfig) {
446 const G4double aFermiMomentum = theConfig->getFermiMomentum();
447 if(aFermiMomentum>0.)
448 constantFermiMomentum = aFermiMomentum;
449 else
450 constantFermiMomentum = PhysicalConstants::Pf;
451 } else {
452 constantFermiMomentum = PhysicalConstants::Pf;
453 }
454 } else if(theConfig->getFermiMomentumType()==ConstantLightFermiMomentum)
458 else {
459 INCL_FATAL("Unrecognized Fermi-momentum type in ParticleTable initialization: " << theConfig->getFermiMomentumType() << '\n');
460 return;
461 }
462
463 // Initialise the r-p correlation coefficients
464 std::fill(rpCorrelationCoefficient, rpCorrelationCoefficient + UnknownParticle, 1.);
465 if(theConfig) {
466 rpCorrelationCoefficient[Proton] = theConfig->getRPCorrelationCoefficient(Proton);
467 rpCorrelationCoefficient[Neutron] = theConfig->getRPCorrelationCoefficient(Neutron);
468 }
469
470 // Initialise the neutron-skin parameters
471 if(theConfig) {
472 neutronSkin = theConfig->getNeutronSkin();
473 neutronHalo = theConfig->getNeutronHalo();
474 }
475
476 }
477
479 // Actually this is the 3rd component of isospin (I_z) multiplied by 2!
480 if(t == Proton) {
481 return 1;
482 } else if(t == Neutron) {
483 return -1;
484 } else if(t == PiPlus) {
485 return 2;
486 } else if(t == PiMinus) {
487 return -2;
488 } else if(t == PiZero) {
489 return 0;
490 } else if(t == DeltaPlusPlus) {
491 return 3;
492 } else if(t == DeltaPlus) {
493 return 1;
494 } else if(t == DeltaZero) {
495 return -1;
496 } else if(t == DeltaMinus) {
497 return -3;
498 } else if(t == Lambda) {
499 return 0;
500 } else if(t == SigmaPlus) {
501 return 2;
502 } else if(t == SigmaZero) {
503 return 0;
504 } else if(t == SigmaMinus) {
505 return -2;
506 } else if(t == KPlus) {
507 return 1;
508 } else if(t == KZero) {
509 return -1;
510 } else if(t == KZeroBar) {
511 return 1;
512 } else if(t == KShort) {
513 return 0;
514 } else if(t == KLong) {
515 return 0;
516 } else if(t == KMinus) {
517 return -1;
518 } else if(t == Eta) {
519 return 0;
520 } else if(t == Omega) {
521 return 0;
522 } else if(t == EtaPrime) {
523 return 0;
524 } else if(t == Photon) {
525 return 0;
526 }
527 INCL_ERROR("Requested isospin of an unknown particle!");
528 return -10; // Unknown
529 }
530
531 std::string getShortName(const ParticleSpecies &s) {
532 if(s.theType==Composite)
533 return getShortName(s.theA,s.theZ);
534 else
535 return getShortName(s.theType);
536 }
537
538 std::string getName(const ParticleSpecies &s) {
539 if(s.theType==Composite)
540 return getName(s.theA,s.theZ);
541 else
542 return getName(s.theType);
543 }
544
545 std::string getName(const G4int A, const G4int Z) {
546 std::stringstream stream;
547 stream << getElementName(Z) << "-" << A;
548 return stream.str();
549 }
550
551 std::string getShortName(const G4int A, const G4int Z) {
552 std::stringstream stream;
553 stream << getElementName(Z);
554 if(A>0)
555 stream << A;
556 return stream.str();
557 }
558
559 std::string getName(const ParticleType p) {
560 if(p == G4INCL::Proton) {
561 return std::string("proton");
562 } else if(p == G4INCL::Neutron) {
563 return std::string("neutron");
564 } else if(p == G4INCL::DeltaPlusPlus) {
565 return std::string("delta++");
566 } else if(p == G4INCL::DeltaPlus) {
567 return std::string("delta+");
568 } else if(p == G4INCL::DeltaZero) {
569 return std::string("delta0");
570 } else if(p == G4INCL::DeltaMinus) {
571 return std::string("delta-");
572 } else if(p == G4INCL::PiPlus) {
573 return std::string("pi+");
574 } else if(p == G4INCL::PiZero) {
575 return std::string("pi0");
576 } else if(p == G4INCL::PiMinus) {
577 return std::string("pi-");
578 } else if(p == G4INCL::Lambda) {
579 return std::string("lambda");
580 } else if(p == G4INCL::SigmaPlus) {
581 return std::string("sigma+");
582 } else if(p == G4INCL::SigmaZero) {
583 return std::string("sigma0");
584 } else if(p == G4INCL::SigmaMinus) {
585 return std::string("sigma-");
586 } else if(p == G4INCL::KPlus) {
587 return std::string("kaon+");
588 } else if(p == G4INCL::KZero) {
589 return std::string("kaon0");
590 } else if(p == G4INCL::KZeroBar) {
591 return std::string("kaon0bar");
592 } else if(p == G4INCL::KMinus) {
593 return std::string("kaon-");
594 } else if(p == G4INCL::KShort) {
595 return std::string("kaonshort");
596 } else if(p == G4INCL::KLong) {
597 return std::string("kaonlong");
598 } else if(p == G4INCL::Composite) {
599 return std::string("composite");
600 } else if(p == G4INCL::Eta) {
601 return std::string("eta");
602 } else if(p == G4INCL::Omega) {
603 return std::string("omega");
604 } else if(p == G4INCL::EtaPrime) {
605 return std::string("etaprime");
606 } else if(p == G4INCL::Photon) {
607 return std::string("photon");
608 }
609 return std::string("unknown");
610 }
611
612 std::string getShortName(const ParticleType p) {
613 if(p == G4INCL::Proton) {
614 return std::string("p");
615 } else if(p == G4INCL::Neutron) {
616 return std::string("n");
617 } else if(p == G4INCL::DeltaPlusPlus) {
618 return std::string("d++");
619 } else if(p == G4INCL::DeltaPlus) {
620 return std::string("d+");
621 } else if(p == G4INCL::DeltaZero) {
622 return std::string("d0");
623 } else if(p == G4INCL::DeltaMinus) {
624 return std::string("d-");
625 } else if(p == G4INCL::PiPlus) {
626 return std::string("pi+");
627 } else if(p == G4INCL::PiZero) {
628 return std::string("pi0");
629 } else if(p == G4INCL::PiMinus) {
630 return std::string("pi-");
631 } else if(p == G4INCL::Lambda) {
632 return std::string("l");
633 } else if(p == G4INCL::SigmaPlus) {
634 return std::string("s+");
635 } else if(p == G4INCL::SigmaZero) {
636 return std::string("s0");
637 } else if(p == G4INCL::SigmaMinus) {
638 return std::string("s-");
639 } else if(p == G4INCL::KPlus) {
640 return std::string("k+");
641 } else if(p == G4INCL::KZero) {
642 return std::string("k0");
643 } else if(p == G4INCL::KZeroBar) {
644 return std::string("k0b");
645 } else if(p == G4INCL::KMinus) {
646 return std::string("k-");
647 } else if(p == G4INCL::KShort) {
648 return std::string("ks");
649 } else if(p == G4INCL::KLong) {
650 return std::string("kl");
651 } else if(p == G4INCL::Composite) {
652 return std::string("comp");
653 } else if(p == G4INCL::Eta) {
654 return std::string("eta");
655 } else if(p == G4INCL::Omega) {
656 return std::string("omega");
657 } else if(p == G4INCL::EtaPrime) {
658 return std::string("etap");
659 } else if(p == G4INCL::Photon) {
660 return std::string("photon");
661 }
662 return std::string("unknown");
663 }
664
666 if(pt == Proton) {
667 return protonMass;
668 } else if(pt == Neutron) {
669 return neutronMass;
670 } else if(pt == PiPlus) {
671 return piPlusMass;
672 } else if(pt == PiMinus) {
673 return piMinusMass;
674 } else if(pt == PiZero) {
675 return piZeroMass;
676 } else if(pt == SigmaPlus) {
677 return SigmaPlusMass;
678 } else if(pt == SigmaMinus) {
679 return SigmaMinusMass;
680 } else if(pt == SigmaZero) {
681 return SigmaZeroMass;
682 } else if(pt == Lambda) {
683 return LambdaMass;
684 } else if(pt == KPlus) {
685 return KPlusMass;
686 } else if(pt == KZero) {
687 return KZeroMass;
688 } else if(pt == KZeroBar) {
689 return KZeroBarMass;
690 } else if(pt == KMinus) {
691 return KMinusMass;
692 } else if(pt == KShort) {
693 return KShortMass;
694 } else if(pt == KLong) {
695 return KLongMass;
696 } else if(pt == Eta) {
697 return etaMass;
698 } else if(pt == Omega) {
699 return omegaMass;
700 } else if(pt == EtaPrime) {
701 return etaPrimeMass;
702 } else if(pt == Photon) {
703 return photonMass;
704 } else {
705 INCL_ERROR("getMass : Unknown particle type." << '\n');
706 return 0.0;
707 }
708 }
709
711 switch(t) {
712 case Proton:
713 return theRealProtonMass;
714 break;
715 case Neutron:
716 return theRealNeutronMass;
717 break;
718 case PiPlus:
719 case PiMinus:
720 return theRealChargedPiMass;
721 break;
722 case PiZero:
723 return theRealPiZeroMass;
724 break;
725 case SigmaPlus:
726 return theRealSigmaPlusMass;
727 break;
728 case SigmaZero:
729 return theRealSigmaZeroMass;
730 break;
731 case SigmaMinus:
732 return theRealSigmaMinusMass;
733 break;
734 case Lambda:
735 return theRealLambdaMass;
736 break;
737 case KPlus:
738 case KMinus:
739 return theRealChargedKaonMass;
740 break;
741 case KZero:
742 case KZeroBar:
743 case KShort:
744 case KLong:
745 return theRealNeutralKaonMass;
746 break;
747 case Eta:
748 return theRealEtaMass;
749 break;
750 case Omega:
751 return theRealOmegaMass;
752 break;
753 case EtaPrime:
754 return theRealEtaPrimeMass;
755 break;
756 case Photon:
757 return theRealPhotonMass;
758 break;
759 default:
760 INCL_ERROR("Particle::getRealMass : Unknown particle type." << '\n');
761 return 0.0;
762 break;
763 }
764 }
765
766 G4double getRealMass(const G4int A, const G4int Z, const G4int S) {
767// assert(A>=0);
768 // For nuclei with Z<0 or Z>A, assume that the exotic charge state is due to pions
769 if(Z<0 && S<0)
770 return (A+S)*theRealNeutronMass - S*LambdaMass - Z*getRealMass(PiMinus);
771 else if(Z>A && S<0)
772 return (A+S)*theRealProtonMass - S*LambdaMass + (A+S-Z)*getRealMass(PiPlus);
773 if(Z<0)
774 return (A)*theRealNeutronMass - Z*getRealMass(PiMinus);
775 else if(Z>A)
776 return (A)*theRealProtonMass + (A-Z)*getRealMass(PiPlus);
777 else if(Z==0 && S==0)
778 return A*theRealNeutronMass;
779 else if(A==Z)
780 return A*theRealProtonMass;
781 else if(Z==0 && S<0)
782 return (A+S)*theRealNeutronMass-S*LambdaMass;
783 else if(A>1) {
784#ifndef INCLXX_IN_GEANT4_MODE
785 return ::G4INCL::NuclearMassTable::getMass(A,Z,S);
786#else
787 if(S<0) return theG4IonTable->GetNucleusMass(Z,A,std::abs(S)) / MeV;
788 else return theG4IonTable->GetNucleusMass(Z,A) / MeV;
789#endif
790 } else
791 return 0.;
792 }
793
794 G4double getINCLMass(const G4int A, const G4int Z, const G4int S) {
795// assert(A>=0);
796 // For nuclei with Z<0 or Z>A, assume that the exotic charge state is due to pions
797 // Note that S<0 for lambda
798 if(Z<0 && S<0)
799 return (A+S)*neutronMass - S*LambdaMass - Z*getINCLMass(PiMinus);
800 else if(Z>A && S<0)
801 return (A+S)*protonMass - S*LambdaMass + (A+S-Z)*getINCLMass(PiPlus);
802 else if(Z<0)
803 return (A)*neutronMass - Z*getINCLMass(PiMinus);
804 else if(Z>A)
805 return (A)*protonMass + (A-Z)*getINCLMass(PiPlus);
806 else if(A>1 && S<0)
807 return Z*(protonMass - protonSeparationEnergy) + (A+S-Z)*(neutronMass - neutronSeparationEnergy) + std::abs(S)*(LambdaMass - lambdaSeparationEnergy);
808 else if(A>1)
809 return Z*(protonMass - protonSeparationEnergy) + (A-Z)*(neutronMass - neutronSeparationEnergy);
810 else if(A==1 && Z==0 && S==0)
811 return getINCLMass(Neutron);
812 else if(A==1 && Z==1 && S==0)
813 return getINCLMass(Proton);
814 else if(A==1 && Z==0 && S==-1)
815 return getINCLMass(Lambda);
816 else
817 return 0.;
818 }
819
820 G4double getTableQValue(const G4int A1, const G4int Z1, const G4int S1, const G4int A2, const G4int Z2, const G4int S2) {
821 return getTableMass(A1,Z1,S1) + getTableMass(A2,Z2,S2) - getTableMass(A1+A2,Z1+Z2,S1+S2);
822 }
823
824 G4double getTableQValue(const G4int A1, const G4int Z1, const G4int S1, const G4int A2, const G4int Z2, const G4int S2, const G4int A3, const G4int Z3, const G4int S3) {
825 return getTableMass(A1,Z1,S1) + getTableMass(A2,Z2,S2) - getTableMass(A3,Z3,S3) - getTableMass(A1+A2-A3,Z1+Z2-Z3,S1+S2-S3);
826 }
827
829 if(p.theType == Composite)
830 return (*getTableMass)(p.theA, p.theZ, p.theS);
831 else
832 return (*getTableParticleMass)(p.theType);
833 }
834
836 switch(t) {
837 case Proton:
838 case Neutron:
839 case DeltaPlusPlus:
840 case DeltaPlus:
841 case DeltaZero:
842 case DeltaMinus:
843 case SigmaPlus:
844 case SigmaZero:
845 case SigmaMinus:
846 case Lambda:
847 return 1;
848 break;
849 case PiPlus:
850 case PiMinus:
851 case PiZero:
852 case KPlus:
853 case KZero:
854 case KZeroBar:
855 case KShort:
856 case KLong:
857 case KMinus:
858 case Eta:
859 case Omega:
860 case EtaPrime:
861 case Photon:
862 return 0;
863 break;
864 default:
865 return 0;
866 break;
867 }
868 }
869
871 switch(t) {
872 case DeltaPlusPlus:
873 return 2;
874 break;
875 case Proton:
876 case DeltaPlus:
877 case PiPlus:
878 case SigmaPlus:
879 case KPlus:
880 return 1;
881 break;
882 case Neutron:
883 case DeltaZero:
884 case PiZero:
885 case SigmaZero:
886 case Lambda:
887 case KZero:
888 case KZeroBar:
889 case KShort:
890 case KLong:
891 case Eta:
892 case Omega:
893 case EtaPrime:
894 case Photon:
895 return 0;
896 break;
897 case DeltaMinus:
898 case PiMinus:
899 case SigmaMinus:
900 case KMinus:
901 return -1;
902 break;
903 default:
904 return 0;
905 break;
906 }
907 }
908
910 switch(t) {
911 case DeltaPlusPlus:
912 case DeltaPlus:
913 case DeltaZero:
914 case DeltaMinus:
915 case Proton:
916 case Neutron:
917 case PiPlus:
918 case PiZero:
919 case PiMinus:
920 case Eta:
921 case Omega:
922 case EtaPrime:
923 case Photon:
924 return 0;
925 break;
926 case Lambda:
927 case SigmaPlus:
928 case SigmaZero:
929 case SigmaMinus:
930 case KZeroBar:
931 case KMinus:
932 return -1;
933 break;
934 case KPlus:
935 case KZero:
936 return 1;
937 break;
938 case KShort:
939 return 0;
940 break;
941 case KLong:
942 return 0;
943 break;
944 default:
945 return 0;
946 break;
947 }
948 }
949
950 G4double getNuclearRadius(const ParticleType t, const G4int A, const G4int Z) {
951// assert(A>=0);
952 if(A > 19 || (A < 6 && A >= 2)) {
953 // For large (Woods-Saxon or Modified Harmonic Oscillator) or small
954 // (Gaussian) nuclei, the radius parameter is just the nuclear radius
955 return getRadiusParameter(t,A,Z);
956 } else if(A < clusterTableASize && Z>=0 && Z < clusterTableZSize && A >= 6) {
957 const G4double thisRMS = positionRMS[Z][A];
958 if(thisRMS>0.0)
959 return thisRMS;
960 else {
961 INCL_DEBUG("getNuclearRadius: Radius for nucleus A = " << A << " Z = " << Z << " is not available" << '\n'
962 << "returning radius for C12");
963 return positionRMS[6][12];
964 }
965 } else if(A <= 19) {
966 const G4double theRadiusParameter = getRadiusParameter(t, A, Z);
967 const G4double theDiffusenessParameter = getSurfaceDiffuseness(t, A, Z);
968 // The formula yields the nuclear RMS radius based on the parameters of
969 // the nuclear-density function
970 return 1.225*theDiffusenessParameter*
971 std::sqrt((2.+5.*theRadiusParameter)/(2.+3.*theRadiusParameter));
972 } else {
973 INCL_ERROR("getNuclearRadius: No radius for nucleus A = " << A << " Z = " << Z << '\n');
974 return 0.0;
975 }
976 }
977
980 }
981
983// assert(A>0);
984 if(A > 19) {
985 // radius fit for lambdas
986 if(t==Lambda){
987 G4double r0 = (1.128+0.439*std::pow(A,-2./3.)) * std::pow(A, 1.0/3.0);
988 return r0;
989 }
990 // phenomenological radius fit
991 G4double r0 = (2.745e-4 * A + 1.063) * std::pow(A, 1.0/3.0);
992 // HFB calculations
995 if(r0hfb>0.)r0 = r0hfb;
996 }
997 //
998 if(t==Neutron)
999 r0 += neutronSkin;
1000 return r0;
1001 } else if(A < 6 && A >= 2) {
1002 if(Z<clusterTableZSize && Z>=0) {
1003 const G4double thisRMS = positionRMS[Z][A];
1004 if(thisRMS>0.0)
1005 return thisRMS;
1006 else {
1007 INCL_DEBUG("getRadiusParameter: Radius for nucleus A = " << A << " Z = " << Z << " is not available" << '\n'
1008 << "returning radius for C12");
1009 return positionRMS[6][12];
1010 }
1011 } else {
1012 INCL_DEBUG("getRadiusParameter: Radius for nucleus A = " << A << " Z = " << Z << " is not available" << '\n'
1013 << "returning radius for C12");
1014 return positionRMS[6][12];
1015 }
1016 } else if(A <= 19 && A >= 6) {
1017 if(t==Lambda){
1018 G4double r0 = (1.128+0.439*std::pow(A,-2./3.)) * std::pow(A, 1.0/3.0);
1019 return r0;
1020 }
1021 // HFB calculations
1024 if(r0hfb>0.)return r0hfb;
1025 }
1026 return mediumRadius[A-1];
1027 // return 1.581*mediumDiffuseness[A-1]*(2.+5.*mediumRadius[A-1])/(2.+3.*mediumRadius[A-1]);
1028 } else {
1029 INCL_ERROR("getRadiusParameter: No radius for nucleus A = " << A << " Z = " << Z << '\n');
1030 return 0.0;
1031 }
1032 }
1033
1035 const G4double XFOISA = 8.0;
1036 if(A > 19) {
1037 return getNuclearRadius(t,A,Z) + XFOISA * getSurfaceDiffuseness(t,A,Z);
1038 } else if(A <= 19 && A >= 6) {
1039 return 5.5 + 0.3 * (G4double(A) - 6.0)/12.0;
1040 } else if(A >= 2) {
1041 return getNuclearRadius(t, A, Z) + 4.5;
1042 } else {
1043 INCL_ERROR("getMaximumNuclearRadius : No maximum radius for nucleus A = " << A << " Z = " << Z << '\n');
1044 return 0.0;
1045 }
1046 }
1047
1049 if(A > 19) {
1050 // phenomenological fit
1051 G4double a = 1.63e-4 * A + 0.510;
1052 // HFB calculations
1055 if(ahfb>0.)a=ahfb;
1056 }
1057 //
1058 if(t==Lambda){
1059 // Like for neutrons
1061 if(ahfb>0.)a=ahfb;
1062 }
1063 if(t==Neutron)
1064 a += neutronHalo;
1065 return a;
1066 } else if(A <= 19 && A >= 6) {
1067 // HFB calculations
1070 if(ahfb>0.)return ahfb;
1071 }
1072 return mediumDiffuseness[A-1];
1073 } else if(A < 6 && A >= 2) {
1074 INCL_ERROR("getSurfaceDiffuseness: was called for A = " << A << " Z = " << Z << '\n');
1075 return 0.0;
1076 } else {
1077 INCL_ERROR("getSurfaceDiffuseness: No diffuseness for nucleus A = " << A << " Z = " << Z << '\n');
1078 return 0.0;
1079 }
1080 }
1081
1083// assert(Z>=0 && A>=0 && Z<=A);
1085 }
1086
1087 G4double getSeparationEnergyINCL(const ParticleType t, const G4int /*A*/, const G4int /*Z*/) {
1088 if(t==Proton)
1089 return theINCLProtonSeparationEnergy;
1090 else if(t==Neutron)
1091 return theINCLNeutronSeparationEnergy;
1092 else if(t==Lambda)
1093 return theINCLLambdaSeparationEnergy;
1094 else {
1095 INCL_ERROR("ParticleTable::getSeparationEnergyINCL : Unknown particle type." << '\n');
1096 return 0.0;
1097 }
1098 }
1099
1101 // Real separation energies for all nuclei
1102 if(t==Proton)
1103 return (*getTableParticleMass)(Proton) + (*getTableMass)(A-1,Z-1,0) - (*getTableMass)(A,Z,0);
1104 else if(t==Neutron)
1105 return (*getTableParticleMass)(Neutron) + (*getTableMass)(A-1,Z,0) - (*getTableMass)(A,Z,0);
1106 else if(t==Lambda)
1107 return (*getTableParticleMass)(Lambda) + (*getTableMass)(A-1,Z,0) - (*getTableMass)(A,Z,-1);
1108 else {
1109 INCL_ERROR("ParticleTable::getSeparationEnergyReal : Unknown particle type." << '\n');
1110 return 0.0;
1111 }
1112 }
1113
1115 // Real separation energies for light nuclei, fixed values for heavy nuclei
1117 return getSeparationEnergyReal(t, A, Z);
1118 else
1119 return getSeparationEnergyINCL(t, A, Z);
1120 }
1121
1122 G4double getProtonSeparationEnergy() { return protonSeparationEnergy; }
1123
1124 G4double getNeutronSeparationEnergy() { return neutronSeparationEnergy; }
1125
1126 G4double getLambdaSeparationEnergy() { return lambdaSeparationEnergy; }
1127
1128 void setProtonSeparationEnergy(const G4double s) { protonSeparationEnergy = s; }
1129
1130 void setNeutronSeparationEnergy(const G4double s) { neutronSeparationEnergy = s; }
1131
1132 void setLambdaSeparationEnergy(const G4double s) { lambdaSeparationEnergy = s; }
1133
1134 std::string getElementName(const G4int Z) {
1135 if(Z<1) {
1136 INCL_WARN("getElementName called with Z<1" << '\n');
1137 return elementTable[0];
1138 } else if(Z<elementTableSize)
1139 return elementTable[Z];
1140 else
1141 return getIUPACElementName(Z);
1142 }
1143
1144 std::string getIUPACElementName(const G4int Z) {
1145 std::stringstream elementStream;
1146 elementStream << Z;
1147 std::string elementName = elementStream.str();
1148 std::transform(elementName.begin(), elementName.end(), elementName.begin(), intToIUPAC);
1149 elementName[0] = std::toupper(elementName.at(0));
1150 return elementName;
1151 }
1152
1153 G4int parseElement(std::string pS) {
1154 // Normalize the element name
1155 std::transform(pS.begin(), pS.end(), pS.begin(), ::tolower);
1156 pS[0] = ::toupper(pS[0]);
1157
1158 const std::string *iter = std::find(elementTable, elementTable+elementTableSize, pS);
1159 if(iter != elementTable+elementTableSize)
1160 return iter - elementTable;
1161 else
1163 }
1164
1165 G4int parseIUPACElement(std::string const &s) {
1166 // Normalise to lower case
1167 std::string elementName(s);
1168 std::transform(elementName.begin(), elementName.end(), elementName.begin(), ::tolower);
1169 // Return 0 if the element name contains anything but IUPAC digits
1170 if(elementName.find_first_not_of(elementIUPACDigits)!=std::string::npos)
1171 return 0;
1172 std::transform(elementName.begin(), elementName.end(), elementName.begin(), iupacToInt);
1173 std::stringstream elementStream(elementName);
1174 G4int Z;
1175 elementStream >> Z;
1176 return Z;
1177 }
1178
1180 return getNaturalIsotopicDistributions()->getIsotopicDistribution(Z);
1181 }
1182
1184 return getNaturalIsotopicDistributions()->drawRandomIsotope(Z);
1185 }
1186
1187 G4double getFermiMomentumConstant(const G4int /*A*/, const G4int /*Z*/) {
1188 return constantFermiMomentum;
1189 }
1190
1192// assert(Z>0 && A>0 && Z<=A);
1194 const G4double rms = momentumRMS[Z][A];
1195 return ((rms>0.) ? rms : momentumRMS[6][12]) * Math::sqrtFiveThirds;
1196 } else
1197 return getFermiMomentumConstant(A,Z);
1198 }
1199
1201// assert(A>0);
1202 static const G4double alphaParam = 259.416; // MeV/c
1203 static const G4double betaParam = 152.824; // MeV/c
1204 static const G4double gammaParam = 9.5157E-2;
1205 return alphaParam - betaParam*std::exp(-gammaParam*((G4double)A));
1206 }
1207
1209// assert(t==Proton || t==Neutron);
1210 return rpCorrelationCoefficient[t];
1211 }
1212
1213 G4double getNeutronSkin() { return neutronSkin; }
1214
1215 G4double getNeutronHalo() { return neutronHalo; }
1216
1224
1226// assert(isosp == -2 || isosp == 0 || isosp == 2);
1227 if (isosp == -2) {
1228 return PiMinus;
1229 }
1230 else if (isosp == 0) {
1231 return PiZero;
1232 }
1233 else {
1234 return PiPlus;
1235 }
1236 }
1237
1239// assert(isosp == -1 || isosp == 1);
1240 if (isosp == -1) {
1241 return Neutron;
1242 }
1243 else {
1244 return Proton;
1245 }
1246 }
1247
1249// assert(isosp == -3 || isosp == -1 || isosp == 1 || isosp == 3);
1250 if (isosp == -3) {
1251 return DeltaMinus;
1252 }
1253 else if (isosp == -1) {
1254 return DeltaZero;
1255 }
1256 else if (isosp == 1) {
1257 return DeltaPlus;
1258 }
1259 else {
1260 return DeltaPlusPlus;
1261 }
1262 }
1263
1264
1266// assert(isosp == -2 || isosp == 0 || isosp == 2);
1267 if (isosp == -2) {
1268 return SigmaMinus;
1269 }
1270 else if (isosp == 0) {
1271 return SigmaZero;
1272 }
1273 else {
1274 return SigmaPlus;
1275 }
1276 }
1277
1279// assert(isosp == -1 || isosp == 1);
1280 if (isosp == -1) {
1281 return KZero;
1282 }
1283 else {
1284 return KPlus;
1285 }
1286 }
1287
1289// assert(isosp == -1 || isosp == 1);
1290 if (isosp == -1) {
1291 return KMinus;
1292 }
1293 else {
1294 return KZeroBar;
1295 }
1296 }
1297
1299// assert(pt == PiPlus || pt == PiMinus || pt == PiZero || pt == Eta || pt == Omega || pt == EtaPrime || pt == KShort || pt == KLong || pt== KPlus || pt == KMinus || pt == Lambda || pt == SigmaPlus || pt == SigmaZero || pt == SigmaMinus);
1300 if(pt == PiPlus) {
1301 return piPlusWidth;
1302 } else if(pt == PiMinus) {
1303 return piMinusWidth;
1304 } else if(pt == PiZero) {
1305 return piZeroWidth;
1306 } else if(pt == Eta) {
1307 return etaWidth;
1308 } else if(pt == Omega) {
1309 return omegaWidth;
1310 } else if(pt == EtaPrime) {
1311 return etaPrimeWidth;
1312 } else if(pt == SigmaPlus) {
1313 return SigmaPlusWidth;
1314 } else if(pt == SigmaZero) {
1315 return SigmaZeroWidth;
1316 } else if(pt == SigmaMinus) {
1317 return SigmaMinusWidth;
1318 } else if(pt == KPlus) {
1319 return KPlusWidth;
1320 } else if(pt == KMinus) {
1321 return KMinusWidth;
1322 } else if(pt == KShort) {
1323 return KShortWidth;
1324 } else if(pt == KLong) {
1325 return KLongWidth;
1326 } else {
1327 INCL_ERROR("getWidth : Unknown particle type." << '\n');
1328 return 0.0;
1329 }
1330 }
1331
1332 } // namespace ParticleTable
1333} // namespace G4INCL
1334
double S(double temp)
double A(double temperature)
#define INCL_ERROR(x)
#define INCL_WARN(x)
#define INCL_FATAL(x)
#define INCL_DEBUG(x)
Functions that encapsulate a mass table.
#define INCL_DEFAULT_SEPARATION_ENERGY
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
G4double getNeutronHalo() const
Get the neutron-halo size.
FermiMomentumType getFermiMomentumType() const
Get the Fermi-momentum type.
SeparationEnergyType getSeparationEnergyType() const
Get the separation-energy type.
G4double getRPCorrelationCoefficient(const ParticleType t) const
Get the r-p correlation coefficient.
std::string const & getINCLXXDataFilePath() const
G4double getNeutronSkin() const
Get the neutron-skin thickness.
G4double getFermiMomentum() const
Get the Fermi momentum.
G4bool getUseRealMasses() const
Whether to use real masses.
Class that stores isotopic abundances for a given element.
G4IonTable * GetIonTable() const
G4ParticleDefinition * FindParticle(G4int PDGEncoding)
static G4ParticleTable * GetParticleTable()
void initialize()
Definition: G4INCLHFB.cc:74
G4double getSurfaceDiffusenessHFB(const ParticleType t, const G4int A, const G4int Z)
Definition: G4INCLHFB.cc:133
G4double getRadiusParameterHFB(const ParticleType t, const G4int A, const G4int Z)
Get the radius and diffuseness parameters from HFB calculations.
Definition: G4INCLHFB.cc:123
T max(const T t1, const T t2)
brief Return the largest of the two arguments
const G4double sqrtFiveThirds
const G4double sqrtThreeFifths
G4int getMassNumber(const ParticleType t)
Get mass number from particle type.
G4ThreadLocal FermiMomentumFn getFermiMomentum
const G4double effectiveDeltaWidth
G4int parseElement(std::string pS)
Get the name of the element from the atomic number.
G4ThreadLocal G4double minDeltaMass2
G4double(* FermiMomentumFn)(const G4int, const G4int)
G4ThreadLocal NuclearMassFn getTableMass
Static pointer to the mass function for nuclei.
G4ThreadLocal SeparationEnergyFn getSeparationEnergy
Static pointer to the separation-energy function.
G4double getTableQValue(const G4int A1, const G4int Z1, const G4int S1, const G4int A2, const G4int Z2, const G4int S2)
Get Q-value (in MeV/c^2)
G4ThreadLocal ParticleMassFn getTableParticleMass
Static pointer to the mass function for particles.
void initialize(Config const *const theConfig=0)
Initialize the particle table.
const G4double effectiveDeltaMass
G4double getFermiMomentumMassDependent(const G4int A, const G4int)
Return the value Fermi momentum from a fit.
G4double getTableSpeciesMass(const ParticleSpecies &p)
G4int drawRandomNaturalIsotope(const G4int Z)
G4double getSeparationEnergyReal(const ParticleType t, const G4int A, const G4int Z)
Return the real separation energy.
G4double getNeutronSeparationEnergy()
Getter for neutronSeparationEnergy.
G4ThreadLocal G4double minDeltaMass
G4double getRadiusParameter(const ParticleType t, const G4int A, const G4int Z)
G4double getLargestNuclearRadius(const G4int A, const G4int Z)
ParticleType getKaonType(const G4int isosp)
Get the type of kaon.
G4double getNeutronHalo()
Get the size of the neutron halo.
G4double getRealMass(const G4INCL::ParticleType t)
Get particle mass (in MeV/c^2)
ParticleType getSigmaType(const G4int isosp)
Get the type of sigma.
G4double getINCLMass(const G4int A, const G4int Z, const G4int S)
Get INCL nuclear mass (in MeV/c^2)
G4double(* ParticleMassFn)(const ParticleType)
G4int getStrangenessNumber(const ParticleType t)
Get strangeness number from particle type.
G4double getMaximumNuclearRadius(const ParticleType t, const G4int A, const G4int Z)
void setLambdaSeparationEnergy(const G4double s)
G4double getRPCorrelationCoefficient(const ParticleType t)
Get the value of the r-p correlation coefficient.
G4int parseIUPACElement(std::string const &pS)
Parse a IUPAC element name.
G4double getSeparationEnergyINCL(const ParticleType t, const G4int, const G4int)
Return INCL's default separation energy.
void setNeutronSeparationEnergy(const G4double s)
Setter for protonSeparationEnergy.
G4double getFermiMomentumConstant(const G4int, const G4int)
Return the constant value of the Fermi momentum.
std::string getName(const ParticleType t)
Get the native INCL name of the particle.
G4ThreadLocal G4double minDeltaMassRndm
G4double(* SeparationEnergyFn)(const ParticleType, const G4int, const G4int)
G4double getNeutronSkin()
Get the thickness of the neutron skin.
std::string getIUPACElementName(const G4int Z)
Get the name of an unnamed element from the IUPAC convention.
G4int getIsospin(const ParticleType t)
Get the isospin of a particle.
ParticleType getNucleonType(const G4int isosp)
Get the type of nucleon.
G4double getSurfaceDiffuseness(const ParticleType t, const G4int A, const G4int Z)
G4double getFermiMomentumConstantLight(const G4int A, const G4int Z)
Return the constant value of the Fermi momentum - special for light.
void setProtonSeparationEnergy(const G4double s)
Setter for protonSeparationEnergy.
ParticleType getPionType(const G4int isosp)
Get the type of pion.
ParticleType getDeltaType(const G4int isosp)
Get the type of delta.
G4double(* NuclearMassFn)(const G4int, const G4int, const G4int)
G4int getChargeNumber(const ParticleType t)
Get charge number from particle type.
G4double getProtonSeparationEnergy()
Getter for protonSeparationEnergy.
IsotopicDistribution const & getNaturalIsotopicDistribution(const G4int Z)
G4double getMomentumRMS(const G4int A, const G4int Z)
Return the RMS of the momentum distribution (light clusters)
ParticleType getAntiKaonType(const G4int isosp)
Get the type of antikaon.
G4double getSeparationEnergyRealForLight(const ParticleType t, const G4int A, const G4int Z)
Return the real separation energy only for light nuclei.
G4double getNuclearRadius(const ParticleType t, const G4int A, const G4int Z)
G4double getWidth(const ParticleType t)
Get particle width (in s)
std::string getShortName(const ParticleType t)
Get the short INCL name of the particle.
std::string getElementName(const G4int Z)
Get the name of the element from the atomic number.
const G4double Pf
Fermi momentum [MeV/c].
@ MassDependentFermiMomentum
@ ConstantLightFermiMomentum
@ RealForLightSeparationEnergy
#define G4ThreadLocal
Definition: tls.hh:77