Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4MuMinusCapturePrecompound Class Reference

#include <G4MuMinusCapturePrecompound.hh>

+ Inheritance diagram for G4MuMinusCapturePrecompound:

Public Member Functions

 G4MuMinusCapturePrecompound (G4VPreCompoundModel *ptr=0)
 
 ~G4MuMinusCapturePrecompound ()
 
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
void ModelDescription (std::ostream &outFile) const
 
- Public Member Functions inherited from G4HadronicInteraction
 G4HadronicInteraction (const G4String &modelName="HadronicModel")
 
virtual ~G4HadronicInteraction ()
 
virtual G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
virtual G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
virtual G4bool IsApplicable (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
G4double GetMinEnergy () const
 
G4double GetMinEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMinEnergy (G4double anEnergy)
 
void SetMinEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMinEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4double GetMaxEnergy () const
 
G4double GetMaxEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMaxEnergy (const G4double anEnergy)
 
void SetMaxEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMaxEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4int GetVerboseLevel () const
 
void SetVerboseLevel (G4int value)
 
const G4StringGetModelName () const
 
void DeActivateFor (const G4Material *aMaterial)
 
void ActivateFor (const G4Material *aMaterial)
 
void DeActivateFor (const G4Element *anElement)
 
void ActivateFor (const G4Element *anElement)
 
G4bool IsBlocked (const G4Material *aMaterial) const
 
G4bool IsBlocked (const G4Element *anElement) const
 
void SetRecoilEnergyThreshold (G4double val)
 
G4double GetRecoilEnergyThreshold () const
 
virtual const std::pair< G4double, G4doubleGetFatalEnergyCheckLevels () const
 
virtual std::pair< G4double, G4doubleGetEnergyMomentumCheckLevels () const
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 
virtual void ModelDescription (std::ostream &outFile) const
 
virtual void BuildPhysicsTable (const G4ParticleDefinition &)
 
virtual void InitialiseModel ()
 
 G4HadronicInteraction (const G4HadronicInteraction &right)=delete
 
const G4HadronicInteractionoperator= (const G4HadronicInteraction &right)=delete
 
G4bool operator== (const G4HadronicInteraction &right) const =delete
 
G4bool operator!= (const G4HadronicInteraction &right) const =delete
 

Additional Inherited Members

- Protected Member Functions inherited from G4HadronicInteraction
void SetModelName (const G4String &nam)
 
G4bool IsBlocked () const
 
void Block ()
 
- Protected Attributes inherited from G4HadronicInteraction
G4HadFinalState theParticleChange
 
G4int verboseLevel
 
G4double theMinEnergy
 
G4double theMaxEnergy
 
G4bool isBlocked
 

Detailed Description

Definition at line 64 of file G4MuMinusCapturePrecompound.hh.

Constructor & Destructor Documentation

◆ G4MuMinusCapturePrecompound()

G4MuMinusCapturePrecompound::G4MuMinusCapturePrecompound ( G4VPreCompoundModel ptr = 0)

Definition at line 63 of file G4MuMinusCapturePrecompound.cc.

65 : G4HadronicInteraction("muMinusNuclearCapture")
66{
67 fMuMass = G4MuonMinus::MuonMinus()->GetPDGMass();
68 fProton = G4Proton::Proton();
69 fNeutron = G4Neutron::Neutron();
70 fThreshold = 10*MeV;
71 fTime = 0.0;
72 fPreCompound = ptr;
73 if(!ptr) {
76 ptr = static_cast<G4VPreCompoundModel*>(p);
77 fPreCompound = ptr;
78 if(!ptr) { fPreCompound = new G4PreCompoundModel(); }
79 }
80}
G4HadronicInteraction * FindModel(const G4String &name)
static G4HadronicInteractionRegistry * Instance()
static G4MuonMinus * MuonMinus()
Definition: G4MuonMinus.cc:99
static G4Neutron * Neutron()
Definition: G4Neutron.cc:103
static G4Proton * Proton()
Definition: G4Proton.cc:92

◆ ~G4MuMinusCapturePrecompound()

G4MuMinusCapturePrecompound::~G4MuMinusCapturePrecompound ( )

Definition at line 84 of file G4MuMinusCapturePrecompound.cc.

85{
86 result.Clear();
87}

Member Function Documentation

◆ ApplyYourself()

G4HadFinalState * G4MuMinusCapturePrecompound::ApplyYourself ( const G4HadProjectile aTrack,
G4Nucleus targetNucleus 
)
virtual

Reimplemented from G4HadronicInteraction.

Definition at line 92 of file G4MuMinusCapturePrecompound.cc.

94{
95 result.Clear();
97 fTime = projectile.GetGlobalTime();
98 G4double time0 = fTime;
99
100 G4double muBindingEnergy = projectile.GetBoundEnergy();
101
102 G4int Z = targetNucleus.GetZ_asInt();
103 G4int A = targetNucleus.GetA_asInt();
105
106 /*
107 G4cout << "G4MuMinusCapturePrecompound::ApplyYourself: Emu= "
108 << muBindingEnergy << G4endl;
109 */
110 // Energy on K-shell
111 G4double muEnergy = fMuMass + muBindingEnergy;
112 G4double muMom =std::sqrt(muBindingEnergy*(muBindingEnergy + 2.0*fMuMass));
113 G4double availableEnergy = massA + fMuMass - muBindingEnergy;
114 G4double residualMass = G4NucleiProperties::GetNuclearMass(A, Z - 1);
115
116 G4ThreeVector vmu = muMom*G4RandomDirection();
117 G4LorentzVector aMuMom(vmu, muEnergy);
118
119 const G4double nenergy = keV;
120
121 // p or 3He as a target
122 // two body reaction mu- + A(Z,A) -> nuMu + A(Z-1,A)
123 if((1 == Z && 1 == A) || (2 == Z && 3 == A)) {
124
125 const G4ParticleDefinition* pd = 0;
126 if(1 == Z) { pd = fNeutron; }
127 else { pd = G4Triton::Triton(); }
128
129 //
130 // Computation in assumption of CM reaction
131 //
132 G4double e = 0.5*(availableEnergy -
133 residualMass*residualMass/availableEnergy);
134
136 AddNewParticle(G4NeutrinoMu::NeutrinoMu(), nudir, e);
137 nudir *= -1.0;
138 AddNewParticle(pd, nudir, availableEnergy - e - residualMass);
139
140 // d or 4He as a target
141 // three body reaction mu- + A(Z,A) -> nuMu + n + A(Z-1,A)
142 // extra neutron produced at rest
143 } else if((1 == Z && 2 == A) || (2 == Z && 4 == A)) {
144
145 const G4ParticleDefinition* pd = 0;
146 if(1 == Z) { pd = fNeutron; }
147 else { pd = G4Triton::Triton(); }
148
149 availableEnergy -= neutron_mass_c2 - nenergy;
150 residualMass = pd->GetPDGMass();
151
152 //
153 // Computation in assumption of CM reaction
154 //
155 G4double e = 0.5*(availableEnergy -
156 residualMass*residualMass/availableEnergy);
157
159 AddNewParticle(G4NeutrinoMu::NeutrinoMu(), nudir, e);
160 nudir *= -1.0;
161 AddNewParticle(pd, nudir, availableEnergy - e - residualMass);
162
163 // extra low-energy neutron
164 nudir = G4RandomDirection();
165 AddNewParticle(fNeutron, nudir, nenergy);
166
167 } else {
168 // sample mu- + p -> nuMu + n reaction in CM of muonic atom
169
170 // nucleus
171 G4LorentzVector momInitial(0.0,0.0,0.0,availableEnergy);
172 G4LorentzVector momResidual, momNu;
173
174 // pick random proton inside nucleus
175 G4double eEx;
176 fNucleus.Init(A, Z);
177 const std::vector<G4Nucleon>& nucleons= fNucleus.GetNucleons();
178 const G4ParticleDefinition* pDef;
179
180 G4int reentryCount = 0;
181
182 do {
183 ++reentryCount;
184 G4int index = 0;
185 do {
186 index=G4int(A*G4UniformRand());
187 pDef = nucleons[index].GetDefinition();
188 } while(pDef != fProton);
189 G4LorentzVector momP = nucleons[index].Get4Momentum();
190
191 // Get CMS kinematics
192 G4LorentzVector theCMS = momP + aMuMom;
193 G4ThreeVector bst = theCMS.boostVector();
194
195 G4double Ecms = theCMS.mag();
196 G4double Enu = 0.5*(Ecms - neutron_mass_c2*neutron_mass_c2/Ecms);
197 eEx = 0.0;
198
199 if(Enu > 0.0) {
200 // make the nu, and transform to lab;
201 momNu.set(Enu*G4RandomDirection(), Enu);
202
203 // nu in lab.
204 momNu.boost(bst);
205 momResidual = momInitial - momNu;
206 eEx = momResidual.mag() - residualMass;
207 if(eEx < 0.0 && eEx + nenergy >= 0.0) {
208 momResidual.set(0.0, 0.0, 0.0, residualMass);
209 eEx = 0.0;
210 }
211 }
212 // in the case of many iterations stop the loop
213 // with zero excitation energy
214 if(reentryCount > 100 && eEx < 0.0) {
216 ed << "Call for " << GetModelName() << G4endl;
217 ed << "Target Z= " << Z
218 << " A= " << A << " Eex(MeV)= " << eEx/MeV << G4endl;
219 ed << " ApplyYourself does not completed after 100 attempts -"
220 << " excitation energy is set to zero";
221 G4Exception("G4MuMinusCapturePrecompound::ApplyYourself", "had006",
222 JustWarning, ed);
223 momResidual.set(0.0, 0.0, 0.0, residualMass);
224 eEx = 0.0;
225 }
226 // Loop checking, 06-Aug-2015, Vladimir Ivanchenko
227 } while(eEx <= 0.0);
228
229 G4ThreeVector dir = momNu.vect().unit();
230 AddNewParticle(G4NeutrinoMu::NeutrinoMu(), dir, momNu.e());
231
232 G4Fragment initialState(A, Z-1, momResidual);
233 initialState.SetNumberOfExcitedParticle(2,0);
234 initialState.SetNumberOfHoles(1,1);
235
236 // decay time for pre-compound/de-excitation starts from zero
237 G4ReactionProductVector* rpv = fPreCompound->DeExcite(initialState);
238 size_t n = rpv->size();
239 for(size_t i=0; i<n; ++i) {
240 G4ReactionProduct* rp = (*rpv)[i];
241
242 // reaction time
243 fTime = time0 + rp->GetTOF();
244 G4ThreeVector direction = rp->GetMomentum().unit();
245 AddNewParticle(rp->GetDefinition(), direction, rp->GetKineticEnergy());
246 delete rp;
247 }
248 delete rpv;
249 }
250 if(verboseLevel > 1)
251 G4cout << "G4MuMinusCapturePrecompound::ApplyYourself: Nsec= "
252 << result.GetNumberOfSecondaries()
253 <<" E0(MeV)= " <<availableEnergy/MeV
254 <<" Mres(GeV)= " <<residualMass/GeV
255 <<G4endl;
256
257 return &result;
258}
double A(double temperature)
@ JustWarning
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:35
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
@ stopAndKill
G4ThreeVector G4RandomDirection()
std::vector< G4ReactionProduct * > G4ReactionProductVector
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
Hep3Vector boostVector() const
HepLorentzVector & boost(double, double, double)
void set(double x, double y, double z, double t)
const std::vector< G4Nucleon > & GetNucleons()
void Init(G4int theA, G4int theZ)
void SetStatusChange(G4HadFinalStateStatus aS)
std::size_t GetNumberOfSecondaries() const
const G4String & GetModelName() const
static G4NeutrinoMu * NeutrinoMu()
Definition: G4NeutrinoMu.cc:84
static G4double GetNuclearMass(const G4double A, const G4double Z)
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
G4double GetKineticEnergy() const
const G4ParticleDefinition * GetDefinition() const
G4ThreeVector GetMomentum() const
G4double GetTOF() const
static G4Triton * Triton()
Definition: G4Triton.cc:94
virtual G4ReactionProductVector * DeExcite(G4Fragment &aFragment)=0

◆ ModelDescription()

void G4MuMinusCapturePrecompound::ModelDescription ( std::ostream &  outFile) const
virtual

Reimplemented from G4HadronicInteraction.

Definition at line 262 of file G4MuMinusCapturePrecompound.cc.

263{
264 outFile << "Sampling of mu- capture by atomic nucleus from K-shell"
265 << " mesoatom orbit.\n"
266 << "Primary reaction mu- + p -> n + neutrino, neutron providing\n"
267 << " initial excitation of the target nucleus and PreCompound"
268 << " model samples final state\n";
269}

The documentation for this class was generated from the following files: