Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4BigBanger.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// 20100114 M. Kelsey -- Remove G4CascadeMomentum, use G4LorentzVector directly
28// 20100301 M. Kelsey -- In generateBangInSCM(), restore old G4CascMom calcs.
29// for (N-1)th outgoing nucleon.
30// 20100319 M. Kelsey -- Use new generateWithRandomAngles for theta,phi stuff
31// 20100407 M. Kelsey -- Replace std::vector<> returns with data members.
32// 20100413 M. Kelsey -- Pass G4CollisionOutput by ref to ::collide()
33// 20100517 M. Kelsey -- Inherit from common base class, clean up code
34// 20100628 M. Kelsey -- Use old "bindingEnergy" fn as wrapper, add balance
35// checking after bang.
36// 20100630 M. Kelsey -- Just do simple boost for target, instead of using
37// G4LorentzConverter with dummy bullet.
38// 20100701 M. Kelsey -- Re-throw momentum list, not just angles!
39// 20100714 M. Kelsey -- Move conservation checking to base class
40// 20100726 M. Kelsey -- Move std::vector<> buffer to .hh file
41// 20100923 M. Kelsey -- Migrate to integer A and Z
42// 20110214 M. Kelsey -- Follow G4InuclParticle::Model enumerator migration
43// 20110806 M. Kelsey -- Pre-allocate buffers to reduce memory churn
44// 20110922 M. Kelsey -- Follow G4InuclParticle::print(ostream&) migration
45// 20120608 M. Kelsey -- Fix variable-name "shadowing" compiler warnings.
46// 20130622 Inherit from G4CascadeDeexciteBase, move to deExcite() interface
47// with G4Fragment
48// 20130924 M. Kelsey -- Replace std::pow with G4Pow::powN() for CPU speed
49// 20150608 M. Kelsey -- Label all while loops as terminating.
50
51#include <algorithm>
52
53#include "G4BigBanger.hh"
54#include "G4SystemOfUnits.hh"
55#include "G4CollisionOutput.hh"
56#include "G4InuclNuclei.hh"
60#include "G4Pow.hh"
61
62using namespace G4InuclSpecialFunctions;
63
64typedef std::vector<G4InuclElementaryParticle>::iterator particleIterator;
65
67
69 G4CollisionOutput& globalOutput) {
70 if (verboseLevel) G4cout << " >>> G4BigBanger::deExcite" << G4endl;
71
72 getTargetData(target);
73 G4ThreeVector toTheLabFrame = PEX.boostVector(); // From rest to lab
74
75 // This "should" be difference between E-target and sum of m(nucleons)
76 G4double etot = (EEXS - bindingEnergy(A,Z)) * MeV/GeV; // To Bertini units
77 if (etot < 0.0) etot = 0.0;
78
79 if (verboseLevel > 2) {
80 G4cout << " BigBanger: target\n" << target
81 << "\n etot " << etot << G4endl;
82 }
83
84 if (verboseLevel > 3) {
85 G4LorentzVector PEXrest = PEX;
86 PEXrest.boost(-toTheLabFrame);
87 G4cout << " target rest frame: px " << PEXrest.px() << " py "
88 << PEXrest.py() << " pz " << PEXrest.pz() << " E " << PEXrest.e()
89 << G4endl;
90 }
91
92 generateBangInSCM(etot, A, Z);
93
94 if (verboseLevel > 2) {
95 G4cout << " particles " << particles.size() << G4endl;
96 for(G4int i = 0; i < G4int(particles.size()); i++)
97 G4cout << particles[i] << G4endl;
98 }
99
100 if (particles.empty()) { // No bang! Don't know why...
101 G4cerr << " >>> G4BigBanger unable to process fragment "
102 << target << G4endl;
103
104 // FIXME: This will violate baryon number, momentum, energy, etc.
105 return;
106 }
107
108 // convert back to Lab
109 G4LorentzVector totscm;
110 G4LorentzVector totlab;
111
112 if (verboseLevel > 2) G4cout << " BigBanger: boosting to lab" << G4endl;
113
114 particleIterator ipart;
115 for(ipart = particles.begin(); ipart != particles.end(); ipart++) {
116 G4LorentzVector mom = ipart->getMomentum();
117 if (verboseLevel > 2) totscm += mom;
118
119 mom.boost(toTheLabFrame);
120 if (verboseLevel > 2) totlab += mom;
121
122 ipart->setMomentum(mom);
123 if (verboseLevel > 2) G4cout << *ipart << G4endl;
124 }
125
126 std::sort(particles.begin(), particles.end(), G4ParticleLargerEkin());
127
128 validateOutput(target, particles); // Checks <vector> directly
129
130 if (verboseLevel > 2) {
131 G4cout << " In SCM: total outgoing momentum " << G4endl
132 << " E " << totscm.e() << " px " << totscm.x()
133 << " py " << totscm.y() << " pz " << totscm.z() << G4endl;
134 G4cout << " In Lab: mom cons " << G4endl
135 << " E " << PEX.e() - totlab.e() // PEX now includes EEXS
136 << " px " << PEX.x() - totlab.x()
137 << " py " << PEX.y() - totlab.y()
138 << " pz " << PEX.z() - totlab.z() << G4endl;
139 }
140
141 globalOutput.addOutgoingParticles(particles);
142}
143
144void G4BigBanger::generateBangInSCM(G4double etot, G4int a, G4int z) {
145 if (verboseLevel > 3) {
146 G4cout << " >>> G4BigBanger::generateBangInSCM" << G4endl;
147 }
148
149 const G4double ang_cut = 0.9999;
150 const G4int itry_max = 1000;
151
152 if (verboseLevel > 2) {
153 G4cout << " a " << a << " z " << z << G4endl;
154 }
155
156 particles.clear(); // Reset output vector before filling
157
158 if (a == 1) { // Special -- bare nucleon doesn't really "explode"
159 G4int knd = (z>0) ? 1 : 2;
160 particles.push_back(G4InuclElementaryParticle(knd)); // zero momentum
161 return;
162 }
163
164 // NOTE: If distribution fails, need to regenerate magnitudes and angles!
165 //*** generateMomentumModules(etot, a, z);
166
167 scm_momentums.reserve(a);
168 G4LorentzVector tot_mom;
169
170 G4bool bad = true;
171 G4int itry = 0;
172 while(bad && itry < itry_max) { /* Loop checking 08.06.2015 MHK */
173 itry++;
174 scm_momentums.clear();
175
176 generateMomentumModules(etot, a, z);
177 if (a == 2) {
178 // This is only a three-vector, not a four-vector
179 G4LorentzVector mom = generateWithRandomAngles(momModules[0]);
180 scm_momentums.push_back(mom);
181 scm_momentums.push_back(-mom); // Only safe since three-vector!
182 bad = false;
183 } else {
184 tot_mom *= 0.; // Easy way to reset accumulator
185
186 for(G4int i = 0; i < a-2; i++) { // All but last two are thrown
187 // This is only a three-vector, not a four-vector
188 G4LorentzVector mom = generateWithRandomAngles(momModules[i]);
189 scm_momentums.push_back(mom);
190 tot_mom += mom;
191 };
192
193 // handle last two
194 G4double tot_mod = tot_mom.rho();
195 G4double ct = -0.5*(tot_mod*tot_mod + momModules[a-2]*momModules[a-2]
196 - momModules[a-1]*momModules[a-1]) / tot_mod
197 / momModules[a-2];
198
199 if (verboseLevel > 2) G4cout << " ct last " << ct << G4endl;
200
201 if(std::fabs(ct) < ang_cut) {
202 // This is only a three-vector, not a four-vector
203 G4LorentzVector mom2 = generateWithFixedTheta(ct, momModules[a - 2]);
204
205 // rotate to the normal system
206 G4LorentzVector apr = tot_mom/tot_mod;
207 G4double a_tr = std::sqrt(apr.x()*apr.x() + apr.y()*apr.y());
208 G4LorentzVector mom;
209 mom.setX(mom2.z()*apr.x() + ( mom2.x()*apr.y() + mom2.y()*apr.z()*apr.x())/a_tr);
210 mom.setY(mom2.z()*apr.y() + (-mom2.x()*apr.x() + mom2.y()*apr.z()*apr.y())/a_tr);
211 mom.setZ(mom2.z()*apr.z() - mom2.y()*a_tr);
212
213 scm_momentums.push_back(mom);
214
215 // and the last one (again, not actually a four-vector!)
216 G4LorentzVector mom1 = -mom - tot_mom;
217
218 scm_momentums.push_back(mom1);
219 bad = false;
220 } // if (abs(ct) < ang_cut)
221 } // (a > 2)
222 } // while (bad && itry<itry_max)
223
224 if (!bad) {
225 particles.resize(a); // Use assignment to avoid temporaries
226 for(G4int i = 0; i < a; i++) {
227 G4int knd = i < z ? 1 : 2;
228 particles[i].fill(scm_momentums[i], knd, G4InuclParticle::BigBanger);
229 };
230 };
231
232 if (verboseLevel > 2) {
233 if (itry == itry_max) G4cout << " BigBanger -> can not generate bang " << G4endl;
234 }
235
236 return;
237}
238
239void G4BigBanger::generateMomentumModules(G4double etot, G4int a, G4int z) {
240 if (verboseLevel > 3) {
241 G4cout << " >>> G4BigBanger::generateMomentumModules" << G4endl;
242 }
243
244 // Proton and neutron masses
247
248 momModules.clear(); // Reset buffer for filling
249
250 G4double xtot = 0.0;
251
252 if (a > 2) { // For "large" nuclei, energy is distributed
253 G4double promax = maxProbability(a);
254
255 momModules.resize(a, 0.); // Pre-allocate to avoid memory churn
256 for(G4int i = 0; i < a; i++) {
257 momModules[i] = generateX(a, promax);
258 xtot += momModules[i];
259
260 if (verboseLevel > 2) {
261 G4cout << " i " << i << " x " << momModules[i] << G4endl;
262 }
263 }
264 } else { // Two-body case is special, must be 50%
265 xtot = 1.;
266 momModules.push_back(0.5);
267 momModules.push_back(0.5);
268 }
269
270 for(G4int i = 0; i < a; i++) {
271 G4double mass = i < z ? mp : mn;
272
273 momModules[i] *= etot/xtot;
274 momModules[i] = std::sqrt(momModules[i] * (momModules[i] + 2.0 * mass));
275
276 if (verboseLevel > 2) {
277 G4cout << " i " << i << " pmod " << momModules[i] << G4endl;
278 }
279 };
280
281 return;
282}
283
284G4double G4BigBanger::xProbability(G4double x, G4int a) const {
285 if (verboseLevel > 3) G4cout << " >>> G4BigBanger::xProbability" << G4endl;
286
287 G4Pow* theG4Pow = G4Pow::GetInstance(); // For convenience
288
289 G4double ekpr = 0.0;
290 if(x < 1.0 || x > 0.0) {
291 ekpr = x * x;
292
293 if (a%2 == 0) { // even A
294 ekpr *= std::sqrt(1.0 - x) * theG4Pow->powN((1.0 - x), (3*a-6)/2);
295 }
296 else {
297 ekpr *= theG4Pow->powN((1.0 - x), (3*a-5)/2);
298 };
299 };
300
301 return ekpr;
302}
303
304G4double G4BigBanger::maxProbability(G4int a) const {
305 if (verboseLevel > 3) {
306 G4cout << " >>> G4BigBanger::maxProbability" << G4endl;
307 }
308
309 return xProbability(2./3./(a-1.0), a);
310}
311
312G4double G4BigBanger::generateX(G4int a, G4double promax) const {
313 if (verboseLevel > 3) G4cout << " >>> G4BigBanger::generateX" << G4endl;
314
315 const G4int itry_max = 1000;
316 G4int itry = 0;
317 G4double x;
318
319 while(itry < itry_max) { /* Loop checking 08.06.2015 MHK */
320 itry++;
321 x = inuclRndm();
322
323 if(xProbability(x, a) >= promax * inuclRndm()) return x;
324 };
325 if (verboseLevel > 2) {
326 G4cout << " BigBanger -> can not generate x " << G4endl;
327 }
328
329 return maxProbability(a);
330}
std::vector< G4InuclElementaryParticle >::iterator particleIterator
Definition: G4BigBanger.cc:64
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
G4GLOB_DLL std::ostream G4cerr
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
Hep3Vector boostVector() const
HepLorentzVector & boost(double, double, double)
virtual void deExcite(const G4Fragment &target, G4CollisionOutput &output)
Definition: G4BigBanger.cc:68
void getTargetData(const G4Fragment &target)
virtual G4bool validateOutput(const G4Fragment &target, G4CollisionOutput &output)
void addOutgoingParticles(const std::vector< G4InuclElementaryParticle > &particles)
static G4double getParticleMass(G4int type)
Definition: G4Pow.hh:49
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double powN(G4double x, G4int n) const
Definition: G4Pow.cc:166
G4LorentzVector generateWithFixedTheta(G4double ct, G4double p, G4double mass=0.)
G4double bindingEnergy(G4int A, G4int Z)
G4LorentzVector generateWithRandomAngles(G4double p, G4double mass=0.)