Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4MuonVDNuclearModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// Author: D.H. Wright
28// Date: 2 February 2011
29//
30// Description: model of muon nuclear interaction in which a gamma from
31// the virtual photon spectrum interacts in the nucleus as
32// a real gamma at low energies and as a pi0 at high energies.
33// Kokoulin's muon cross section and equivalent gamma spectrum
34// are used.
35//
36
38
39#include "Randomize.hh"
40#include "G4Log.hh"
42#include "G4SystemOfUnits.hh"
43#include "G4CascadeInterface.hh"
44#include "G4TheoFSGenerator.hh"
46#include "G4PreCompoundModel.hh"
49#include "G4FTFModel.hh"
53#include "G4ElementData.hh"
54#include "G4Physics2DVector.hh"
55#include "G4Pow.hh"
56
57const G4int G4MuonVDNuclearModel::zdat[] = {1, 4, 13, 29, 92};
58const G4double G4MuonVDNuclearModel::adat[] = {1.01,9.01,26.98,63.55,238.03};
59const G4double G4MuonVDNuclearModel::tdat[] = {
60 1.e3,2.e3,3.e3,4.e3,5.e3,6.e3,7.e3,8.e3,9.e3,
61 1.e4,2.e4,3.e4,4.e4,5.e4,6.e4,7.e4,8.e4,9.e4,
62 1.e5,2.e5,3.e5,4.e5,5.e5,6.e5,7.e5,8.e5,9.e5,
63 1.e6,2.e6,3.e6,4.e6,5.e6,6.e6,7.e6,8.e6,9.e6,
64 1.e7,2.e7,3.e7,4.e7,5.e7,6.e7,7.e7,8.e7,9.e7,
65 1.e8,2.e8,3.e8,4.e8,5.e8,6.e8,7.e8,8.e8,9.e8,
66 1.e9,2.e9,3.e9,4.e9,5.e9,6.e9,7.e9,8.e9,9.e9,
67 1.e10,2.e10,3.e10,4.e10,5.e10,6.e10,7.e10,8.e10,9.e10,1.e11};
68
69G4ElementData* G4MuonVDNuclearModel::fElementData = nullptr;
70
72 : G4HadronicInteraction("G4MuonVDNuclearModel"),isMaster(false)
73{
75 GetCrossSectionDataSet(G4KokoulinMuonNuclearXS::Default_Name());
76
77 SetMinEnergy(0.0);
78 SetMaxEnergy(1*CLHEP::PeV);
79 CutFixed = 0.2*CLHEP::GeV;
80
81 if(!fElementData && G4Threading::IsMasterThread()) {
82 fElementData = new G4ElementData();
83 MakeSamplingTable();
84 isMaster = true;
85 }
86
87 // reuse existing pre-compound model
88 G4GeneratorPrecompoundInterface* precoInterface
92 G4VPreCompoundModel* pre = static_cast<G4VPreCompoundModel*>(p);
93 if(!pre) { pre = new G4PreCompoundModel(); }
94 precoInterface->SetDeExcitation(pre);
95
96 // Build FTFP model
97 ftfp = new G4TheoFSGenerator();
98 ftfp->SetTransport(precoInterface);
99 theFragmentation = new G4LundStringFragmentation();
100 theStringDecay = new G4ExcitedStringDecay(theFragmentation);
101 G4FTFModel* theStringModel = new G4FTFModel;
102 theStringModel->SetFragmentationModel(theStringDecay);
103 ftfp->SetHighEnergyGenerator(theStringModel);
104
105 // Build Bertini cascade
106 bert = new G4CascadeInterface();
107}
108
110{
111 delete theFragmentation;
112 delete theStringDecay;
113
114 if(isMaster) {
115 delete fElementData;
116 fElementData = nullptr;
117 }
118}
119
122 G4Nucleus& targetNucleus)
123{
125
126 // For very low energy, return initial track
127 G4double epmax = aTrack.GetTotalEnergy() - 0.5*proton_mass_c2;
128 if (epmax <= CutFixed) {
132 return &theParticleChange;
133 }
134
135 // Produce recoil muon and transferred photon
136 G4DynamicParticle* transferredPhoton = CalculateEMVertex(aTrack, targetNucleus);
137
138 // Interact the gamma with the nucleus
139 CalculateHadronicVertex(transferredPhoton, targetNucleus);
140 return &theParticleChange;
141}
142
144G4MuonVDNuclearModel::CalculateEMVertex(const G4HadProjectile& aTrack,
145 G4Nucleus& targetNucleus)
146{
147 // Select sampling table
148 G4double KineticEnergy = aTrack.GetKineticEnergy();
149 G4double TotalEnergy = aTrack.GetTotalEnergy();
151 G4Pow* g4calc = G4Pow::GetInstance();
152 G4double lnZ = g4calc->logZ(targetNucleus.GetZ_asInt());
153
154 G4double epmin = CutFixed;
155 G4double epmax = TotalEnergy - 0.5*proton_mass_c2;
156 G4double m0 = CutFixed;
157
158 G4double delmin = 1.e10;
159 G4double del;
160 G4int izz = 0;
161 G4int itt = 0;
162
163 for (G4int iz = 0; iz < nzdat; ++iz) {
164 del = std::abs(lnZ - g4calc->logZ(zdat[iz]));
165 if (del < delmin) {
166 delmin = del;
167 izz = iz;
168 }
169 }
170
171 delmin = 1.e10;
172 for (G4int it = 0; it < ntdat; ++it) {
173 del = std::abs(G4Log(KineticEnergy)-G4Log(tdat[it]) );
174 if (del < delmin) {
175 delmin = del;
176 itt = it;
177 }
178 }
179
180 // Sample the energy transfer according to the probability table
182
183 G4int iy;
184
185 G4int Z = zdat[izz];
186
187 for(iy = 0; iy<NBIN; ++iy) {
188
189 G4double pvv = fElementData->GetElement2DData(Z)->GetValue(iy, itt);
190 if(pvv >= r) { break; }
191 }
192
193 // Sampling is done uniformly in y in the bin
194 G4double pvx = fElementData->GetElement2DData(Z)->GetX(iy);
195 G4double pvx1 = fElementData->GetElement2DData(Z)->GetX(iy+1);
196 G4double y = pvx + G4UniformRand() * (pvx1 - pvx);
197
198 G4double x = G4Exp(y);
199 G4double ep = epmin*G4Exp(x*G4Log(epmax/epmin) );
200
201 // Sample scattering angle of mu, but first t should be sampled.
202 G4double yy = ep/TotalEnergy;
203 G4double tmin = Mass*Mass*yy*yy/(1.-yy);
204 G4double tmax = 2.*proton_mass_c2*ep;
205 G4double t1;
206 G4double t2;
207 if (m0 < ep) {
208 t1 = m0*m0;
209 t2 = ep*ep;
210 } else {
211 t1 = ep*ep;
212 t2 = m0*m0;
213 }
214
215 G4double w1 = tmax*t1;
216 G4double w2 = tmax+t1;
217 G4double w3 = tmax*(tmin+t1)/(tmin*w2);
218 G4double y1 = 1.-yy;
219 G4double y2 = 0.5*yy*yy;
220 G4double y3 = y1+y2;
221
222 G4double t;
223 G4double rej;
224
225 // Now sample t
226 G4int ntry = 0;
227 do
228 {
229 ntry += 1;
230 if (ntry > 10000) {
232 eda << " While count exceeded " << G4endl;
233 G4Exception("G4MuonVDNuclearModel::CalculateEMVertex()", "HAD_RPG_100", JustWarning, eda);
234 break;
235 }
236
237 t = w1/(w2*G4Exp(G4UniformRand()*G4Log(w3))-tmax);
238 rej = (1.-t/tmax)*(y1*(1.-tmin/t)+y2)/(y3*(1.-t/t2));
239 } while (G4UniformRand() > rej) ; /* Loop checking, 01.09.2015, D.Wright */
240
241 // compute angle from t
242 G4double sinth2 =
243 0.5*(t-tmin)/(2.*(TotalEnergy*(TotalEnergy-ep)-Mass*Mass)-tmin);
244 G4double theta = std::acos(1. - 2.*sinth2);
245
246 G4double phi = twopi*G4UniformRand();
247 G4double sinth = std::sin(theta);
248 G4double dirx = sinth*std::cos(phi);
249 G4double diry = sinth*std::sin(phi);
250 G4double dirz = std::cos(theta);
251 G4ThreeVector finalDirection(dirx,diry,dirz);
252 G4ThreeVector ParticleDirection(aTrack.Get4Momentum().vect().unit() );
253 finalDirection.rotateUz(ParticleDirection);
254
255 G4double NewKinEnergy = KineticEnergy - ep;
256 G4double finalMomentum = std::sqrt(NewKinEnergy*(NewKinEnergy+2.*Mass) );
257 G4double Ef = NewKinEnergy + Mass;
258 G4double initMomentum = std::sqrt(KineticEnergy*(TotalEnergy+Mass) );
259
260 // Set energy and direction of scattered primary in theParticleChange
263 theParticleChange.SetMomentumChange(finalDirection);
264
265 // Now create the emitted gamma
266 G4LorentzVector primaryMomentum(initMomentum*ParticleDirection, TotalEnergy);
267 G4LorentzVector fsMomentum(finalMomentum*finalDirection, Ef);
268 G4LorentzVector momentumTransfer = primaryMomentum - fsMomentum;
269
270 G4DynamicParticle* gamma =
271 new G4DynamicParticle(G4Gamma::Gamma(), momentumTransfer);
272
273 return gamma;
274}
275
276void
277G4MuonVDNuclearModel::CalculateHadronicVertex(G4DynamicParticle* incident,
278 G4Nucleus& target)
279{
280 G4HadFinalState* hfs = 0;
281 G4double gammaE = incident->GetTotalEnergy();
282
283 if (gammaE < 10*GeV) {
284 G4HadProjectile projectile(*incident);
285 hfs = bert->ApplyYourself(projectile, target);
286 } else {
287 // convert incident gamma to a pi0
289 G4double piKE = incident->GetTotalEnergy() - piMass;
290 G4double piMom = std::sqrt(piKE*(piKE + 2*piMass) );
291 G4ThreeVector piMomentum(incident->GetMomentumDirection() );
292 piMomentum *= piMom;
293 G4DynamicParticle theHadron(G4PionZero::PionZero(), piMomentum);
294 G4HadProjectile projectile(theHadron);
295 hfs = ftfp->ApplyYourself(projectile, target);
296 }
297
298 delete incident;
299
300 // Copy secondaries from sub-model to model
302}
303
304
305void G4MuonVDNuclearModel::MakeSamplingTable()
306{
307 G4int nbin;
309 G4double TotalEnergy;
310 G4double Maxep;
311 G4double CrossSection;
312
313 G4double c;
314 G4double y;
315 G4double ymin,ymax;
316 G4double dy,yy;
317 G4double dx,x;
318 G4double ep;
319
320 G4double AtomicNumber;
321 G4double AtomicWeight;
322
324
325 for (G4int iz = 0; iz < nzdat; ++iz) {
326 AtomicNumber = zdat[iz];
327 AtomicWeight = adat[iz]*(g/mole);
328
329 G4Physics2DVector* pv = new G4Physics2DVector(NBIN+1,ntdat+1);
330 G4double pvv;
331
332 for (G4int it = 0; it < ntdat; ++it) {
333 KineticEnergy = tdat[it];
334 TotalEnergy = KineticEnergy + mumass;
335 Maxep = TotalEnergy - 0.5*proton_mass_c2;
336
337 CrossSection = 0.0;
338
339 // Calculate the differential cross section
340 // numerical integration in log .........
341 c = G4Log(Maxep/CutFixed);
342 ymin = -5.0;
343 ymax = 0.0;
344 dy = (ymax-ymin)/NBIN;
345
346 nbin=-1;
347
348 y = ymin - 0.5*dy;
349 yy = ymin - dy;
350 for (G4int i = 0; i < NBIN; ++i) {
351 y += dy;
352 x = G4Exp(y);
353 yy += dy;
354 dx = G4Exp(yy+dy)-G4Exp(yy);
355
356 ep = CutFixed*G4Exp(c*x);
357
358 CrossSection +=
359 ep*dx*muNucXS->ComputeDDMicroscopicCrossSection(KineticEnergy,
360 AtomicNumber,
361 AtomicWeight, ep);
362 if (nbin < NBIN) {
363 ++nbin;
364 pv->PutValue(nbin, it, CrossSection);
365 pv->PutX(nbin, y);
366 }
367 }
368 pv->PutX(NBIN, 0.);
369
370 if (CrossSection > 0.0) {
371 for (G4int ib = 0; ib <= nbin; ++ib) {
372 pvv = pv->GetValue(ib, it);
373 pvv = pvv/CrossSection;
374 pv->PutValue(ib, it, pvv);
375 }
376 }
377 } // loop on it
378
379 fElementData->InitialiseForElement(zdat[iz], pv);
380 } // loop on iz
381
382 // G4cout << " Kokoulin XS = "
383 // << muNucXS->ComputeDDMicroscopicCrossSection(1*GeV, 20.0,
384 // 40.0*g/mole, 0.3*GeV)/millibarn
385 // << G4endl;
386}
387
388void G4MuonVDNuclearModel::ModelDescription(std::ostream& outFile) const
389{
390 outFile << "G4MuonVDNuclearModel handles the inelastic scattering\n"
391 << "of mu- and mu+ from nuclei using the equivalent photon\n"
392 << "approximation in which the incoming lepton generates a\n"
393 << "virtual photon at the electromagnetic vertex, and the\n"
394 << "virtual photon is converted to a real photon. At low\n"
395 << "energies, the photon interacts directly with the nucleus\n"
396 << "using the Bertini cascade. At high energies the photon\n"
397 << "is converted to a pi0 which interacts using the FTFP\n"
398 << "model. The muon-nuclear cross sections of R. Kokoulin \n"
399 << "are used to generate the virtual photon spectrum\n";
400}
401
@ JustWarning
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:35
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
@ isAlive
G4double G4Log(G4double x)
Definition: G4Log.hh:226
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
Hep3Vector vect() const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &theNucleus)
static G4CrossSectionDataSetRegistry * Instance()
const G4ThreeVector & GetMomentumDirection() const
G4double GetTotalEnergy() const
void InitialiseForElement(G4int Z, G4PhysicsVector *v)
G4Physics2DVector * GetElement2DData(G4int Z)
static G4Gamma * Gamma()
Definition: G4Gamma.cc:85
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondaries(const std::vector< G4HadSecondary > &addSecs)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
G4HadronicInteraction * FindModel(const G4String &name)
static G4HadronicInteractionRegistry * Instance()
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)
static const char * Default_Name()
G4double ComputeDDMicroscopicCrossSection(G4double incidentKE, G4double Z, G4double A, G4double epsilon)
static G4MuonMinus * MuonMinus()
Definition: G4MuonMinus.cc:99
virtual void ModelDescription(std::ostream &outFile) const
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
G4double GetValue(std::size_t idx, std::size_t idy) const
G4double GetX(std::size_t index) const
static G4PionZero * PionZero()
Definition: G4PionZero.cc:107
Definition: G4Pow.hh:49
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double logZ(G4int Z) const
Definition: G4Pow.hh:137
void SetTransport(G4VIntraNuclearTransportModel *const value)
void SetHighEnergyGenerator(G4VHighEnergyGenerator *const value)
G4HadFinalState * ApplyYourself(const G4HadProjectile &thePrimary, G4Nucleus &theNucleus) override
void SetDeExcitation(G4VPreCompoundModel *ptr)
void SetFragmentationModel(G4VStringFragmentation *aModel)
G4bool IsMasterThread()
Definition: G4Threading.cc:124