Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4CascadeInterface.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// 20100114 M. Kelsey -- Remove G4CascadeMomentum, use G4LorentzVector directly
28// 20100413 M. Kelsey -- Pass G4CollisionOutput by ref to ::collide()
29// 20100414 M. Kelsey -- Check for K0L/K0S before using G4InuclElemPart::type
30// 20100418 M. Kelsey -- Reference output particle lists via const-ref, use
31// const_iterator for both.
32// 20100428 M. Kelsey -- Use G4InuclParticleNames enum
33// 20100429 M. Kelsey -- Change "case gamma:" to "case photon:"
34// 20100517 M. Kelsey -- Follow new ctors for G4*Collider family.
35// 20100520 M. Kelsey -- Simplify collision loop, move momentum rotations to
36// G4CollisionOutput, copy G4DynamicParticle directly from
37// G4InuclParticle, no switch-block required.
38// 20100615 M. Kelsey -- Bug fix: For K0's need ekin in GEANT4 units
39// 20100617 M. Kelsey -- Rename "debug_" preprocessor flag to G4CASCADE_DEBUG,
40// and "BERTDEV" to "G4CASCADE_COULOMB_DEV"
41// 20100617 M. Kelsey -- Make G4InuclCollider a local data member
42// 20100618 M. Kelsey -- Deploy energy-conservation test on final state, with
43// preprocessor flag G4CASCADE_SKIP_ECONS to skip test.
44// 20100620 M. Kelsey -- Use new energy-conservation pseudo-collider
45// 20100621 M. Kelsey -- Fix compiler warning from GCC 4.5
46// 20100624 M. Kelsey -- Fix cascade loop to check nTries every time (had
47// allowed for infinite loop on E-violation); dump event data
48// to output if E-violation exceeds maxTries; use CheckBalance
49// for baryon and charge conservation.
50// 20100701 M. Kelsey -- Pass verbosity through to G4CollisionOutput
51// 20100714 M. Kelsey -- Report number of iterations before success
52// 20100720 M. Kelsey -- Use G4CASCADE_SKIP_ECONS flag for reporting
53// 20100723 M. Kelsey -- Move G4CollisionOutput to .hh file for reuse
54// 20100914 M. Kelsey -- Migrate to integer A and Z
55// 20100916 M. Kelsey -- Simplify ApplyYourself() by encapsulating code blocks
56// into numerous functions; make data-member colliders pointers;
57// provide support for projectile nucleus
58// 20100919 M. Kelsey -- Fix incorrect logic in retryInelasticNucleus()
59// 20100922 M. Kelsey -- Add functions to select de-excitation method
60// 20100924 M. Kelsey -- Migrate to "OutgoingNuclei" names in CollisionOutput
61// 20110224 M. Kelsey -- Add createTarget() for use with Propagate(); split
62// conservation law messages to separate function; begin to add
63// infrastructure code to Propagate. Move verbose
64// setting to .cc file, and apply to all member objects.
65// 20110301 M. Kelsey -- Add copyPreviousCascade() for use with Propagate()
66// along with new buffers and related particle-conversion
67// functions. Encapulate buffer deletion in clear(). Add some
68// diagnostic messages.
69// 20110302 M. Kelsey -- Redo diagnostics inside G4CASCADE_DEBUG_INTERFACE
70// 20110304 M. Kelsey -- Drop conversion of Propagate() arguments; pass
71// directly to collider for processing. Rename makeReactionProduct
72// to makeDynamicParticle.
73// 20110316 M. Kelsey -- Move kaon-mixing for type-code into G4InuclParticle;
74// add placeholders to capture and use bullet in Propagte
75// 20110327 G. Folger -- Set up for E/p checking by G4HadronicProcess in ctor
76// 20110328 M. Kelsey -- Modify balance() initialization to match Gunter's
77// 20110404 M. Kelsey -- Get primary projectile from base class (ref-03)
78// 20110502 M. Kelsey -- Add interface to capture random seeds for user
79// 20110719 M. Kelsey -- Use trivialise() in case maximum retries are reached
80// 20110720 M. Kelsey -- Discard elastic-cut array (no longer needed),
81// discard local "theFinalState" (in base as "theParticleChange"),
82// Modify createBullet() to set null pointer if bullet unusable,
83// return empty final-state on failures.
84// Fix charge violation report before throwing exception.
85// 20110722 M. Kelsey -- In makeDynamicParticle(), allow invalid type codes
86// in order to process, e.g., resonances from Propagate() input
87// 20110728 M. Kelsey -- Per V.Ivantchenko, change NoInteraction to return
88// zero particles, but set kinetic energy from projectile.
89// 20110801 M. Kelsey -- Make bullet, target point to local buffers, no delete
90// 20110802 M. Kelsey -- Use new decay handler for Propagate interface
91// 20110922 M. Kelsey -- Follow migration of G4InuclParticle::print(), use
92// G4ExceptionDescription for reporting before throwing exception
93// 20120125 M. Kelsey -- In retryInelasticProton() check for empty output
94// 20120525 M. Kelsey -- In NoInteraction, check for Ekin<0., set to zero;
95// use SetEnergyChange(0.) explicitly for good final states.
96// 20120822 M. Kelsey -- Move envvars to G4CascadeParameters.
97// 20130508 D. Wright -- Add support for muon capture
98// 20130804 M. Kelsey -- Fix bug #1513 -- "(Z=1)" in boolean expression
99// 20140116 M. Kelsey -- Move statics to const data members to avoid weird
100// interactions with MT.
101// 20140929 M. Kelsey -- Explicitly call useCascadeDeexcitation() in ctor
102// 20150506 M. Kelsey -- Call Initialize() in ctor for master thread only
103// 20150608 M. Kelsey -- Label all while loops as terminating.
104
105#include <cmath>
106#include <iostream>
107
108#include "G4CascadeInterface.hh"
109#include "globals.hh"
110#include "G4SystemOfUnits.hh"
113#include "G4CascadeParameters.hh"
114#include "G4CollisionOutput.hh"
116#include "G4DynamicParticle.hh"
117#include "G4HadronicException.hh"
118#include "G4InuclCollider.hh"
121#include "G4InuclNuclei.hh"
122#include "G4InuclParticle.hh"
124#include "G4KaonZeroLong.hh"
125#include "G4KaonZeroShort.hh"
126#include "G4KineticTrack.hh"
128#include "G4Nucleus.hh"
131#include "G4Threading.hh"
132#include "G4Track.hh"
133#include "G4V3DNucleus.hh"
134#include "G4UnboundPN.hh"
135#include "G4Dineutron.hh"
136#include "G4Diproton.hh"
137
138using namespace G4InuclParticleNames;
139
140typedef std::vector<G4InuclElementaryParticle>::const_iterator particleIterator;
141typedef std::vector<G4InuclNuclei>::const_iterator nucleiIterator;
142
143
144// Constructor and destrutor
145
148 randomFile(G4CascadeParameters::randomFile()),
149 maximumTries(20), numberOfTries(0),
150 collider(new G4InuclCollider), balance(new G4CascadeCheckBalance(name)),
151 ltcollider(new G4LightTargetCollider),
152 bullet(0), target(0), output(new G4CollisionOutput)
153{
154 // Set up global objects for master thread or sequential build
156
157 SetEnergyMomentumCheckLevels(5*perCent, 10*MeV);
158 balance->setLimits(5*perCent, 10*MeV/GeV); // Bertini internal units
160
163 else
165}
166
168 clear();
169 delete collider; collider=0;
170 delete ltcollider; ltcollider = 0;
171 delete balance; balance=0;
172 delete output; output=0;
173}
174
175void G4CascadeInterface::ModelDescription(std::ostream& outFile) const
176{
177 outFile << "The Bertini-style cascade implements the inelastic scattering\n"
178 << "of hadrons by nuclei. Nucleons, pions, kaons and hyperons\n"
179 << "from 0 to 15 GeV may be used as projectiles in this model.\n"
180 << "Final state hadrons are produced by a classical cascade\n"
181 << "consisting of individual hadron-nucleon scatterings which use\n"
182 << "free-space partial cross sections, corrected for various\n"
183 << "nuclear medium effects. The target nucleus is modeled as a\n"
184 << "set of 1, 3 or 6 spherical shells, in which scattered hadrons\n"
185 << "travel in straight lines until they are reflected from or\n"
186 << "transmitted through shell boundaries.\n";
187}
188
189void G4CascadeInterface::DumpConfiguration(std::ostream& outFile) const {
191}
192
194 bullet=0;
195 target=0;
196}
197
198
199// Initialize shared objects for use across multiple threads
200
206 if (!ch || !pn || !nn || !pp) return; // Avoid "unused variables"
207}
208
209
210// Select post-cascade processing (default will be CascadeDeexcitation)
211// NOTE: Currently just calls through to Collider, in future will do something
212
214 collider->useCascadeDeexcitation();
215}
216
218 collider->usePreCompoundDeexcitation();
219}
220
221
222// Apply verbosity to all member objects (overrides base class version)
223
226 collider->setVerboseLevel(verbose);
227 balance->setVerboseLevel(verbose);
228 output->setVerboseLevel(verbose);
229}
230
231
232// Test whether inputs are valid for this model
233
235 G4Nucleus& /* theNucleus */) {
236 return IsApplicable(aTrack.GetDefinition());
237}
238
240 if (aPD->GetAtomicMass() > 1) return true; // Nuclei are okay
241
242 // Valid particle and have interactions available
245}
246
247
248// Main Actions
249
252 G4Nucleus& theNucleus) {
253 if (verboseLevel)
254 G4cout << " >>> G4CascadeInterface::ApplyYourself" << G4endl;
255
256 if (aTrack.GetKineticEnergy() < 0.) {
257 G4cerr << " >>> G4CascadeInterface got negative-energy track: "
258 << aTrack.GetDefinition()->GetParticleName() << " Ekin = "
259 << aTrack.GetKineticEnergy() << G4endl;
260 }
261
262#ifdef G4CASCADE_DEBUG_INTERFACE
263 static G4int counter(0);
264 counter++;
265 G4cerr << "Reaction number "<< counter << " "
266 << aTrack.GetDefinition()->GetParticleName() << " "
267 << aTrack.GetKineticEnergy() << " MeV" << G4endl;
268#endif
269
270 if (!randomFile.empty()) { // User requested random-seed capture
271 if (verboseLevel>1)
272 G4cout << " Saving random engine state to " << randomFile << G4endl;
274 }
275
277 clear();
278
279 // Abort processing if no interaction is possible
280 if (!IsApplicable(aTrack, theNucleus)) {
281 if (verboseLevel) G4cerr << " No interaction possible " << G4endl;
282 return NoInteraction(aTrack, theNucleus);
283 }
284
285 // If target A < 3 skip all cascade machinery and do scattering on
286 // nucleons
287
288 if (aTrack.GetDefinition() == G4Gamma::Gamma() &&
289 theNucleus.GetA_asInt() < 3) {
290 output->reset();
291 createBullet(aTrack);
292 createTarget(theNucleus);
293 // Due to binning, gamma-p cross sections between 130 MeV and the inelastic threshold
294 // (144 for pi0 p, 152 for pi+ n) are non-zero, causing energy non-conservation
295 // So, if Egamma is between 144 and 152, only pi0 p is allowed.
296
297 // Also, inelastic gamma-p cross section from G4PhotoNuclearCrossSection seems to be
298 // non-zero below between pi0 mass (135 MeV) and threshold (144 MeV)
299 ltcollider->collide(bullet, target, *output);
300
301 } else {
302
303 // Make conversion between native Geant4 and Bertini cascade classes.
304 if (!createBullet(aTrack)) {
305 if (verboseLevel) G4cerr << " Unable to create usable bullet" << G4endl;
306 return NoInteraction(aTrack, theNucleus);
307 }
308
309 if (!createTarget(theNucleus)) {
310 if (verboseLevel) G4cerr << " Unable to create usable target" << G4endl;
311 return NoInteraction(aTrack, theNucleus);
312 }
313
314 // Different retry conditions for proton target vs. nucleus
315 const G4bool isHydrogen = (theNucleus.GetA_asInt() == 1);
316
317 numberOfTries = 0;
318 do { // we try to create inelastic interaction
319 if (verboseLevel > 1)
320 G4cout << " Generating cascade attempt " << numberOfTries << G4endl;
321
322 output->reset();
323 collider->collide(bullet, target, *output);
324 balance->collide(bullet, target, *output);
325
326 numberOfTries++;
327 /* Loop checking 08.06.2015 MHK */
328 } while ( isHydrogen ? retryInelasticProton() : retryInelasticNucleus() );
329
330 // Null event if unsuccessful
331 if (numberOfTries >= maximumTries) {
332 if (verboseLevel)
333 G4cout << " Cascade aborted after trials " << numberOfTries << G4endl;
334 return NoInteraction(aTrack, theNucleus);
335 }
336
337 // Abort job if energy or momentum are not conserved
338 if (!balance->okay()) {
340 return NoInteraction(aTrack, theNucleus);
341 }
342
343 // Successful cascade -- clean up and return
344 if (verboseLevel) {
345 G4cout << " Cascade output after trials " << numberOfTries << G4endl;
346 if (verboseLevel > 1) output->printCollisionOutput();
347 }
348
349 } // end cascade-style collisions
350
352
353 // Report violations of conservation laws in original frame
355
356 // Clean up and return final result;
357 clear();
358/*
359 G4int nSec = theParticleChange.GetNumberOfSecondaries();
360 for (G4int i = 0; i < nSec; i++) {
361 G4HadSecondary* sec = theParticleChange.GetSecondary(i);
362 G4DynamicParticle* dp = sec->GetParticle();
363 if (dp->GetDefinition()->GetParticleName() == "neutron")
364 G4cout << dp->GetDefinition()->GetParticleName() << " has "
365 << dp->GetKineticEnergy()/MeV << " MeV " << G4endl;
366 }
367*/
368 return &theParticleChange;
369}
370
373 G4V3DNucleus* theNucleus) {
374 if (verboseLevel) G4cout << " >>> G4CascadeInterface::Propagate" << G4endl;
375
376#ifdef G4CASCADE_DEBUG_INTERFACE
377 if (verboseLevel>1) {
378 G4cout << " G4V3DNucleus A " << theNucleus->GetMassNumber()
379 << " Z " << theNucleus->GetCharge()
380 << "\n " << theSecondaries->size() << " secondaries:" << G4endl;
381 for (size_t i=0; i<theSecondaries->size(); i++) {
382 G4KineticTrack* kt = (*theSecondaries)[i];
383 G4cout << " " << i << ": " << kt->GetDefinition()->GetParticleName()
384 << " p " << kt->Get4Momentum() << " @ " << kt->GetPosition()
385 << " t " << kt->GetFormationTime() << G4endl;
386 }
387 }
388#endif
389
390 if (!randomFile.empty()) { // User requested random-seed capture
391 if (verboseLevel>1)
392 G4cout << " Saving random engine state to " << randomFile << G4endl;
394 }
395
397 clear();
398
399 // Process input secondaries list to eliminate resonances
400 G4DecayKineticTracks decay(theSecondaries);
401
402 // NOTE: Requires 9.4-ref-03 mods to base class and G4TheoFSGenerator
403 const G4HadProjectile* projectile = GetPrimaryProjectile();
404 if (projectile) createBullet(*projectile);
405
406 if (!createTarget(theNucleus)) {
407 if (verboseLevel) G4cerr << " Unable to create usable target" << G4endl;
408 return 0; // FIXME: This will cause a segfault later
409 }
410
411 numberOfTries = 0;
412 do {
413 if (verboseLevel > 1)
414 G4cout << " Generating rescatter attempt " << numberOfTries << G4endl;
415
416 output->reset();
417 collider->rescatter(bullet, theSecondaries, theNucleus, *output);
418 balance->collide(bullet, target, *output);
419
420 numberOfTries++;
421 // FIXME: retry checks will SEGFAULT until we can define the bullet!
422 } while (retryInelasticNucleus()); /* Loop checking 08.06.2015 MHK */
423
424 // Check whether repeated attempts have all failed; report and exit
425 if (numberOfTries >= maximumTries && !balance->okay()) {
426 throwNonConservationFailure(); // This terminates the job
427 }
428
429 // Successful cascade -- clean up and return
430 if (verboseLevel) {
431 G4cout << " Cascade rescatter after trials " << numberOfTries << G4endl;
432 if (verboseLevel > 1) output->printCollisionOutput();
433 }
434
435 // Does calling code take ownership? I hope so!
437
438 // Clean up and and return final result
439 clear();
440 return propResult;
441}
442
443
444// Replicate input particles onto output
445
448 G4Nucleus& /*theNucleus*/) {
449 if (verboseLevel)
450 G4cout << " >>> G4CascadeInterface::NoInteraction" << G4endl;
451
454
455 G4double ekin = aTrack.GetKineticEnergy()>0. ? aTrack.GetKineticEnergy() : 0.;
456 theParticleChange.SetEnergyChange(ekin); // Protect against rounding
457
458 return &theParticleChange;
459}
460
461
462// Convert input projectile to Bertini internal object
463
465 const G4ParticleDefinition* trkDef = aTrack.GetDefinition();
466 G4int bulletType = 0; // For elementary particles
467 G4int bulletA = 0, bulletZ = 0; // For nucleus projectile
468
469 if (trkDef->GetAtomicMass() <= 1) {
470 bulletType = G4InuclElementaryParticle::type(trkDef);
471 } else {
472 bulletA = trkDef->GetAtomicMass();
473 bulletZ = trkDef->GetAtomicNumber();
474 }
475
476 if (0 == bulletType && 0 == bulletA*bulletZ) {
477 if (verboseLevel) {
478 G4cerr << " G4CascadeInterface: " << trkDef->GetParticleName()
479 << " not usable as bullet." << G4endl;
480 }
481 bullet = 0;
482 return false;
483 }
484
485 // Code momentum and energy -- Bertini wants z-axis and GeV units
486 G4LorentzVector projectileMomentum = aTrack.Get4Momentum()/GeV;
487
488 // Rotation/boost to get from z-axis back to original frame
489 // According to bug report #1990 this rotation is unnecessary and causes
490 // irreproducibility. Verifed and fixed by DHW 27 Nov 2017
491 // bulletInLabFrame = G4LorentzRotation::IDENTITY; // Initialize
492 // bulletInLabFrame.rotateZ(-projectileMomentum.phi());
493 // bulletInLabFrame.rotateY(-projectileMomentum.theta());
494 // bulletInLabFrame.invert();
495
496 G4LorentzVector momentumBullet(0., 0., projectileMomentum.rho(),
497 projectileMomentum.e());
498
499 if (G4InuclElementaryParticle::valid(bulletType)) {
500 hadronBullet.fill(momentumBullet, bulletType);
501 bullet = &hadronBullet;
502 } else {
503 nucleusBullet.fill(momentumBullet, bulletA, bulletZ);
504 bullet = &nucleusBullet;
505 }
506
507 if (verboseLevel > 2) G4cout << "Bullet: \n" << *bullet << G4endl;
508
509 return true;
510}
511
512
513// Convert input nuclear target to Bertini internal object
514
516 return createTarget(theNucleus.GetA_asInt(), theNucleus.GetZ_asInt());
517}
518
520 return createTarget(theNucleus->GetMassNumber(), theNucleus->GetCharge());
521}
522
524 if (A > 1) {
525 nucleusTarget.fill(A, Z);
526 target = &nucleusTarget;
527 } else {
528 hadronTarget.fill(0., (Z==1?proton:neutron));
529 target = &hadronTarget;
530 }
531
532 if (verboseLevel > 2) G4cout << "Target: \n" << *target << G4endl;
533
534 return true; // Right now, target never fails
535}
536
537
538// Convert Bertini particle to output (G4DynamicParticle)
539
542 G4int outgoingType = iep.type();
543
544 if (iep.quasi_deutron()) {
545 G4cerr << " ERROR: G4CascadeInterface incompatible particle type "
546 << outgoingType << G4endl;
547 return 0;
548 }
549
550 // Copy local G4DynPart to public output (handle kaon mixing specially)
551 if (outgoingType == kaonZero || outgoingType == kaonZeroBar) {
552 G4ThreeVector momDir = iep.getMomentum().vect().unit();
553 G4double ekin = iep.getKineticEnergy()*GeV; // Bertini -> G4 units
554
556 if (G4UniformRand() > 0.5) pd = G4KaonZeroLong::Definition();
557
558 return new G4DynamicParticle(pd, momDir, ekin);
559 } else {
560 return new G4DynamicParticle(iep.getDynamicParticle());
561 }
562
563 return 0; // Should never get here!
564}
565
568 if (verboseLevel > 2) {
569 G4cout << " Nuclei fragment: \n" << inuc << G4endl;
570 }
571
572 // Copy local G4DynPart to public output
573 return new G4DynamicParticle(inuc.getDynamicParticle());
574}
575
576
577// Transfer Bertini internal final state to hadronics interface
578
580 if (verboseLevel > 1)
581 G4cout << " >>> G4CascadeInterface::copyOutputToHadronicResult" << G4endl;
582
583 const std::vector<G4InuclNuclei>& outgoingNuclei = output->getOutgoingNuclei();
584 const std::vector<G4InuclElementaryParticle>& particles = output->getOutgoingParticles();
585
588
589 // Get outcoming particles
590 if (!particles.empty()) {
591 particleIterator ipart = particles.begin();
592 for (; ipart != particles.end(); ipart++) {
594 }
595 }
596
597 // get nuclei fragments
598 if (!outgoingNuclei.empty()) {
599 nucleiIterator ifrag = outgoingNuclei.begin();
600 for (; ifrag != outgoingNuclei.end(); ifrag++) {
602 }
603 }
604}
605
607 if (verboseLevel > 1)
608 G4cout << " >>> G4CascadeInterface::copyOutputToReactionProducts" << G4endl;
609
610 const std::vector<G4InuclElementaryParticle>& particles = output->getOutgoingParticles();
611 const std::vector<G4InuclNuclei>& fragments = output->getOutgoingNuclei();
612
614
615 G4ReactionProduct* rp = 0; // Buffers to create outgoing tracks
616 G4DynamicParticle* dp = 0;
617
618 // Get outcoming particles
619 if (!particles.empty()) {
620 particleIterator ipart = particles.begin();
621 for (; ipart != particles.end(); ipart++) {
622 rp = new G4ReactionProduct;
623 dp = makeDynamicParticle(*ipart);
624 (*rp) = (*dp); // This does all the necessary copying
625 propResult->push_back(rp);
626 delete dp;
627 }
628 }
629
630 // get nuclei fragments
631 if (!fragments.empty()) {
632 nucleiIterator ifrag = fragments.begin();
633 for (; ifrag != fragments.end(); ifrag++) {
634 rp = new G4ReactionProduct;
635 dp = makeDynamicParticle(*ifrag);
636 (*rp) = (*dp); // This does all the necessary copying
637 propResult->push_back(rp);
638 delete dp;
639 }
640 }
641
642 return propResult;
643}
644
645
646// Report violations of conservation laws in original frame
647
649 balance->collide(bullet, target, *output);
650
651 if (verboseLevel > 2) {
652 if (!balance->baryonOkay()) {
653 G4cerr << "ERROR: no baryon number conservation, sum of baryons = "
654 << balance->deltaB() << G4endl;
655 }
656
657 if (!balance->chargeOkay()) {
658 G4cerr << "ERROR: no charge conservation, sum of charges = "
659 << balance->deltaQ() << G4endl;
660 }
661
662 if (std::abs(balance->deltaKE()) > 0.01 ) { // GeV
663 G4cerr << "Kinetic energy conservation violated by "
664 << balance->deltaKE() << " GeV" << G4endl;
665 }
666
667 G4double eInit = bullet->getEnergy() + target->getEnergy();
668 G4double eFinal = eInit + balance->deltaE();
669
670 G4cout << "Initial energy " << eInit << " final energy " << eFinal
671 << "\nTotal energy conservation at level "
672 << balance->deltaE() * GeV << " MeV" << G4endl;
673
674 if (balance->deltaKE() > 5.0e-5 ) { // 0.05 MeV
675 G4cerr << "FATAL ERROR: kinetic energy created "
676 << balance->deltaKE() * GeV << " MeV" << G4endl;
677 }
678 }
679}
680
681
682// Evaluate whether any outgoing particles penetrated Coulomb barrier
683
685 G4bool violated = false; // by default coulomb analysis is OK
686
687 const G4double coulumbBarrier = 8.7 * MeV/GeV; // Bertini uses GeV
688
689 const std::vector<G4InuclElementaryParticle>& p =
690 output->getOutgoingParticles();
691
692 for (particleIterator ipart=p.begin(); ipart != p.end(); ipart++) {
693 if (ipart->type() == proton) {
694 violated |= (ipart->getKineticEnergy() < coulumbBarrier);
695 }
696 }
697
698 return violated;
699}
700
701// Check whether inelastic collision on proton failed
702
704 const std::vector<G4InuclElementaryParticle>& out =
705 output->getOutgoingParticles();
706
707#ifdef G4CASCADE_DEBUG_INTERFACE
708 // Report on all retry conditions, in order of return logic
709 G4cout << " retryInelasticProton: number of Tries "
710 << ((numberOfTries < maximumTries) ? "RETRY (t)" : "EXIT (f)")
711 << "\n retryInelasticProton: AND collision type ";
712 if (out.empty()) G4cout << "FAILED" << G4endl;
713 else {
714 G4cout << (out.size() == 2 ? "ELASTIC (t)" : "INELASTIC (f)")
715 << "\n retryInelasticProton: AND Leading particles bullet "
716 << (out.size() >= 2 &&
717 (out[0].getDefinition() == bullet->getDefinition() ||
718 out[1].getDefinition() == bullet->getDefinition())
719 ? "YES (t)" : "NO (f)")
720 << G4endl;
721 }
722#endif
723
724 return ( (numberOfTries < maximumTries) &&
725 (out.empty() ||
726 (out.size() == 2 &&
727 (out[0].getDefinition() == bullet->getDefinition() ||
728 out[1].getDefinition() == bullet->getDefinition())))
729 );
730}
731
732// Check whether generic inelastic collision failed
733// NOTE: some conditions are set by compiler flags
734
736 // Quantities necessary for conditional block below
737 G4int npart = output->numberOfOutgoingParticles();
738 G4int nfrag = output->numberOfOutgoingNuclei();
739
740 const G4ParticleDefinition* firstOut = (npart == 0) ? 0 :
741 output->getOutgoingParticles().begin()->getDefinition();
742
743#ifdef G4CASCADE_DEBUG_INTERFACE
744 // Report on all retry conditions, in order of return logic
745 G4cout << " retryInelasticNucleus: numberOfTries "
746 << ((numberOfTries < maximumTries) ? "RETRY (t)" : "EXIT (f)")
747 << "\n retryInelasticNucleus: AND outputParticles "
748 << ((npart != 0) ? "NON-ZERO (t)" : "EMPTY (f)")
749#ifdef G4CASCADE_COULOMB_DEV
750 << "\n retryInelasticNucleus: AND coulombBarrier (COULOMB_DEV) "
751 << (coulombBarrierViolation() ? "VIOLATED (t)" : "PASSED (f)")
752 << "\n retryInelasticNucleus: AND collision type (COULOMB_DEV) "
753 << ((npart+nfrag > 2) ? "INELASTIC (t)" : "ELASTIC (f)")
754#else
755 << "\n retryInelasticNucleus: AND collision type "
756 << ((npart+nfrag < 3) ? "ELASTIC (t)" : "INELASTIC (f)")
757 << "\n retryInelasticNucleus: AND Leading particle bullet "
758 << ((firstOut == bullet->getDefinition()) ? "YES (t)" : "NO (f)")
759#endif
760 << "\n retryInelasticNucleus: OR conservation "
761 << (!balance->okay() ? "FAILED (t)" : "PASSED (f)")
762 << G4endl;
763#endif
764
765 return ( (numberOfTries < maximumTries) &&
766 ( ((npart != 0) &&
767#ifdef G4CASCADE_COULOMB_DEV
768 (coulombBarrierViolation() && npart+nfrag > 2)
769#else
770 (npart+nfrag < 3 && firstOut == bullet->getDefinition())
771#endif
772 )
773#ifndef G4CASCADE_SKIP_ECONS
774 || (!balance->okay())
775#endif
776 )
777 );
778}
779
780
781// Terminate job in case of persistent non-conservation
782// FIXME: Need to migrate to G4ExceptionDescription
783
785 // NOTE: Once G4HadronicException is changed, use the following line!
786 // G4ExceptionDescription errInfo;
787 std::ostream& errInfo = G4cerr;
788
789 errInfo << " >>> G4CascadeInterface has non-conserving"
790 << " cascade after " << numberOfTries << " attempts." << G4endl;
791
792 G4String throwMsg = "G4CascadeInterface - ";
793 if (!balance->energyOkay()) {
794 throwMsg += "Energy";
795 errInfo << " Energy conservation violated by " << balance->deltaE()
796 << " GeV (" << balance->relativeE() << ")" << G4endl;
797 }
798
799 if (!balance->momentumOkay()) {
800 throwMsg += "Momentum";
801 errInfo << " Momentum conservation violated by " << balance->deltaP()
802 << " GeV/c (" << balance->relativeP() << ")" << G4endl;
803 }
804
805 if (!balance->baryonOkay()) {
806 throwMsg += "Baryon number";
807 errInfo << " Baryon number violated by " << balance->deltaB() << G4endl;
808 }
809
810 if (!balance->chargeOkay()) {
811 throwMsg += "Charge";
812 errInfo << " Charge conservation violated by " << balance->deltaQ()
813 << G4endl;
814 }
815
816 errInfo << " Final event output, for debugging:\n"
817 << " Bullet: \n" << *bullet << G4endl
818 << " Target: \n" << *target << G4endl;
819 output->printCollisionOutput(errInfo);
820
821 throwMsg += " non-conservation. More info in output.";
822 throw G4HadronicException(__FILE__, __LINE__, throwMsg); // Job ends here!
823}
std::vector< G4InuclElementaryParticle >::iterator particleIterator
Definition: G4BigBanger.cc:64
std::vector< G4InuclElementaryParticle >::const_iterator particleIterator
std::vector< G4InuclNuclei >::const_iterator nucleiIterator
double A(double temperature)
@ isAlive
@ stopAndKill
std::vector< G4ReactionProduct * > G4ReactionProductVector
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
G4GLOB_DLL std::ostream G4cerr
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
Hep3Vector vect() const
static void saveEngineStatus(const char filename[]="Config.conf")
Definition: Random.cc:278
static const G4CascadeChannel * GetTable(G4int initialState)
void setLimits(G4double relative, G4double absolute)
void collide(G4InuclParticle *bullet, G4InuclParticle *target, G4CollisionOutput &output)
virtual void ModelDescription(std::ostream &outFile) const
G4bool coulombBarrierViolation() const
G4bool retryInelasticNucleus() const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &theNucleus)
G4bool IsApplicable(const G4HadProjectile &aTrack, G4Nucleus &theNucleus)
G4HadFinalState * NoInteraction(const G4HadProjectile &aTrack, G4Nucleus &theNucleus)
G4bool createBullet(const G4HadProjectile &aTrack)
G4bool createTarget(G4Nucleus &theNucleus)
G4ReactionProductVector * copyOutputToReactionProducts()
virtual void DumpConfiguration(std::ostream &outFile) const
void SetVerboseLevel(G4int verbose)
G4ReactionProductVector * Propagate(G4KineticTrackVector *theSecondaries, G4V3DNucleus *theNucleus)
G4bool retryInelasticProton() const
G4DynamicParticle * makeDynamicParticle(const G4InuclElementaryParticle &iep) const
G4CascadeInterface(const G4String &name="BertiniCascade")
static void DumpConfiguration(std::ostream &os)
static G4bool usePreCompound()
G4int numberOfOutgoingParticles() const
const std::vector< G4InuclNuclei > & getOutgoingNuclei() const
void printCollisionOutput(std::ostream &os=G4cout) const
const std::vector< G4InuclElementaryParticle > & getOutgoingParticles() const
void setVerboseLevel(G4int verbose)
G4int numberOfOutgoingNuclei() const
static G4Dineutron * Definition()
Definition: G4Dineutron.cc:67
static G4Diproton * Definition()
Definition: G4Diproton.cc:67
static G4Gamma * Gamma()
Definition: G4Gamma.cc:85
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
void SetEnergyChange(G4double anEnergy)
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
void SetVerboseLevel(G4int value)
void SetEnergyMomentumCheckLevels(G4double relativeLevel, G4double absoluteLevel)
void useCascadeDeexcitation()
void usePreCompoundDeexcitation()
void collide(G4InuclParticle *bullet, G4InuclParticle *target, G4CollisionOutput &globalOutput)
void rescatter(G4InuclParticle *bullet, G4KineticTrackVector *theSecondaries, G4V3DNucleus *theNucleus, G4CollisionOutput &globalOutput)
void setVerboseLevel(G4int verbose=0)
void fill(G4int ityp, Model model=DefaultModel)
void fill(G4int a, G4int z, G4double exc=0., Model model=DefaultModel)
const G4ParticleDefinition * getDefinition() const
G4double getKineticEnergy() const
G4LorentzVector getMomentum() const
G4double getEnergy() const
const G4DynamicParticle & getDynamicParticle() const
static G4KaonZeroLong * Definition()
static G4KaonZeroShort * Definition()
G4double GetFormationTime() const
const G4ThreeVector & GetPosition() const
const G4ParticleDefinition * GetDefinition() const
const G4LorentzVector & Get4Momentum() const
void collide(G4InuclParticle *bullet, G4InuclParticle *target, G4CollisionOutput &globalOutput)
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
G4int GetAtomicNumber() const
G4int GetAtomicMass() const
const G4String & GetParticleName() const
static G4UnboundPN * Definition()
Definition: G4UnboundPN.cc:66
virtual G4int GetCharge()=0
virtual G4int GetMassNumber()=0
virtual void setVerboseLevel(G4int verbose=0)
const G4HadProjectile * GetPrimaryProjectile() const
const char * name(G4int ptype)
G4bool IsMasterThread()
Definition: G4Threading.cc:124