Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4Paraboloid Class Reference

#include <G4Paraboloid.hh>

+ Inheritance diagram for G4Paraboloid:

Public Member Functions

 G4Paraboloid (const G4String &pName, G4double pDz, G4double pR1, G4double pR2)
 
virtual ~G4Paraboloid ()
 
G4double GetZHalfLength () const
 
G4double GetRadiusMinusZ () const
 
G4double GetRadiusPlusZ () const
 
G4double GetCubicVolume ()
 
G4double GetSurfaceArea ()
 
G4double CalculateSurfaceArea () const
 
void SetZHalfLength (G4double dz)
 
void SetRadiusMinusZ (G4double R1)
 
void SetRadiusPlusZ (G4double R2)
 
void BoundingLimits (G4ThreeVector &pMin, G4ThreeVector &pMax) const
 
G4bool CalculateExtent (const EAxis pAxis, const G4VoxelLimits &pVoxelLimit, const G4AffineTransform &pTransform, G4double &pmin, G4double &pmax) const
 
EInside Inside (const G4ThreeVector &p) const
 
G4ThreeVector SurfaceNormal (const G4ThreeVector &p) const
 
G4double DistanceToIn (const G4ThreeVector &p, const G4ThreeVector &v) const
 
G4double DistanceToIn (const G4ThreeVector &p) const
 
G4double DistanceToOut (const G4ThreeVector &p, const G4ThreeVector &v, const G4bool calcNorm=false, G4bool *validNorm=nullptr, G4ThreeVector *n=nullptr) const
 
G4double DistanceToOut (const G4ThreeVector &p) const
 
G4GeometryType GetEntityType () const
 
G4VSolidClone () const
 
std::ostream & StreamInfo (std::ostream &os) const
 
G4ThreeVector GetPointOnSurface () const
 
void DescribeYourselfTo (G4VGraphicsScene &scene) const
 
G4PolyhedronCreatePolyhedron () const
 
G4PolyhedronGetPolyhedron () const
 
 G4Paraboloid (__void__ &)
 
 G4Paraboloid (const G4Paraboloid &rhs)
 
G4Paraboloidoperator= (const G4Paraboloid &rhs)
 
- Public Member Functions inherited from G4VSolid
 G4VSolid (const G4String &name)
 
virtual ~G4VSolid ()
 
G4bool operator== (const G4VSolid &s) const
 
G4String GetName () const
 
void SetName (const G4String &name)
 
G4double GetTolerance () const
 
virtual void BoundingLimits (G4ThreeVector &pMin, G4ThreeVector &pMax) const
 
virtual G4bool CalculateExtent (const EAxis pAxis, const G4VoxelLimits &pVoxelLimit, const G4AffineTransform &pTransform, G4double &pMin, G4double &pMax) const =0
 
virtual EInside Inside (const G4ThreeVector &p) const =0
 
virtual G4ThreeVector SurfaceNormal (const G4ThreeVector &p) const =0
 
virtual G4double DistanceToIn (const G4ThreeVector &p, const G4ThreeVector &v) const =0
 
virtual G4double DistanceToIn (const G4ThreeVector &p) const =0
 
virtual G4double DistanceToOut (const G4ThreeVector &p, const G4ThreeVector &v, const G4bool calcNorm=false, G4bool *validNorm=nullptr, G4ThreeVector *n=nullptr) const =0
 
virtual G4double DistanceToOut (const G4ThreeVector &p) const =0
 
virtual void ComputeDimensions (G4VPVParameterisation *p, const G4int n, const G4VPhysicalVolume *pRep)
 
virtual G4double GetCubicVolume ()
 
virtual G4double GetSurfaceArea ()
 
virtual G4GeometryType GetEntityType () const =0
 
virtual G4ThreeVector GetPointOnSurface () const
 
virtual G4VSolidClone () const
 
virtual std::ostream & StreamInfo (std::ostream &os) const =0
 
void DumpInfo () const
 
virtual void DescribeYourselfTo (G4VGraphicsScene &scene) const =0
 
virtual G4VisExtent GetExtent () const
 
virtual G4PolyhedronCreatePolyhedron () const
 
virtual G4PolyhedronGetPolyhedron () const
 
virtual const G4VSolidGetConstituentSolid (G4int no) const
 
virtual G4VSolidGetConstituentSolid (G4int no)
 
virtual const G4DisplacedSolidGetDisplacedSolidPtr () const
 
virtual G4DisplacedSolidGetDisplacedSolidPtr ()
 
 G4VSolid (__void__ &)
 
 G4VSolid (const G4VSolid &rhs)
 
G4VSolidoperator= (const G4VSolid &rhs)
 
G4double EstimateCubicVolume (G4int nStat, G4double epsilon) const
 
G4double EstimateSurfaceArea (G4int nStat, G4double ell) const
 

Protected Attributes

G4bool fRebuildPolyhedron = false
 
G4PolyhedronfpPolyhedron = nullptr
 
- Protected Attributes inherited from G4VSolid
G4double kCarTolerance
 

Additional Inherited Members

- Protected Member Functions inherited from G4VSolid
void CalculateClippedPolygonExtent (G4ThreeVectorList &pPolygon, const G4VoxelLimits &pVoxelLimit, const EAxis pAxis, G4double &pMin, G4double &pMax) const
 
void ClipCrossSection (G4ThreeVectorList *pVertices, const G4int pSectionIndex, const G4VoxelLimits &pVoxelLimit, const EAxis pAxis, G4double &pMin, G4double &pMax) const
 
void ClipBetweenSections (G4ThreeVectorList *pVertices, const G4int pSectionIndex, const G4VoxelLimits &pVoxelLimit, const EAxis pAxis, G4double &pMin, G4double &pMax) const
 
void ClipPolygon (G4ThreeVectorList &pPolygon, const G4VoxelLimits &pVoxelLimit, const EAxis pAxis) const
 

Detailed Description

Definition at line 67 of file G4Paraboloid.hh.

Constructor & Destructor Documentation

◆ G4Paraboloid() [1/3]

G4Paraboloid::G4Paraboloid ( const G4String pName,
G4double  pDz,
G4double  pR1,
G4double  pR2 
)

Definition at line 62 of file G4Paraboloid.cc.

66 : G4VSolid(pName)
67{
68 if( (pDz <= 0.) || (pR2 <= pR1) || (pR1 < 0.) )
69 {
70 std::ostringstream message;
71 message << "Invalid dimensions. Negative Input Values or R1>=R2 - "
72 << GetName();
73 G4Exception("G4Paraboloid::G4Paraboloid()", "GeomSolids0002",
74 FatalErrorInArgument, message,
75 "Z half-length must be larger than zero or R1>=R2.");
76 }
77
78 r1 = pR1;
79 r2 = pR2;
80 dz = pDz;
81
82 // r1^2 = k1 * (-dz) + k2
83 // r2^2 = k1 * ( dz) + k2
84 // => r1^2 + r2^2 = k2 + k2 => k2 = (r2^2 + r1^2) / 2
85 // and r2^2 - r1^2 = k1 * dz - k1 * (-dz) => k1 = (r2^2 - r1^2) / 2 / dz
86
87 k1 = (r2 * r2 - r1 * r1) / 2 / dz;
88 k2 = (r2 * r2 + r1 * r1) / 2;
89}
@ FatalErrorInArgument
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
G4String GetName() const

◆ ~G4Paraboloid()

G4Paraboloid::~G4Paraboloid ( )
virtual

Definition at line 105 of file G4Paraboloid.cc.

106{
107 delete fpPolyhedron; fpPolyhedron = nullptr;
108}
G4Polyhedron * fpPolyhedron

◆ G4Paraboloid() [2/3]

G4Paraboloid::G4Paraboloid ( __void__ &  a)

Definition at line 96 of file G4Paraboloid.cc.

97 : G4VSolid(a), dz(0.), r1(0.), r2(0.), k1(0.), k2(0.)
98{
99}

◆ G4Paraboloid() [3/3]

G4Paraboloid::G4Paraboloid ( const G4Paraboloid rhs)

Definition at line 114 of file G4Paraboloid.cc.

115 : G4VSolid(rhs),
116 fSurfaceArea(rhs.fSurfaceArea), fCubicVolume(rhs.fCubicVolume),
117 dz(rhs.dz), r1(rhs.r1), r2(rhs.r2), k1(rhs.k1), k2(rhs.k2)
118{
119}

Member Function Documentation

◆ BoundingLimits()

void G4Paraboloid::BoundingLimits ( G4ThreeVector pMin,
G4ThreeVector pMax 
) const
virtual

Reimplemented from G4VSolid.

Definition at line 149 of file G4Paraboloid.cc.

151{
152 pMin.set(-r2,-r2,-dz);
153 pMax.set( r2, r2, dz);
154
155 // Check correctness of the bounding box
156 //
157 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z())
158 {
159 std::ostringstream message;
160 message << "Bad bounding box (min >= max) for solid: "
161 << GetName() << " !"
162 << "\npMin = " << pMin
163 << "\npMax = " << pMax;
164 G4Exception("G4Paraboloid::BoundingLimits()", "GeomMgt0001",
165 JustWarning, message);
166 DumpInfo();
167 }
168}
@ JustWarning
double z() const
double x() const
double y() const
void set(double x, double y, double z)
void DumpInfo() const

Referenced by CalculateExtent().

◆ CalculateExtent()

G4bool G4Paraboloid::CalculateExtent ( const EAxis  pAxis,
const G4VoxelLimits pVoxelLimit,
const G4AffineTransform pTransform,
G4double pmin,
G4double pmax 
) const
virtual

Implements G4VSolid.

Definition at line 175 of file G4Paraboloid.cc.

179{
180 G4ThreeVector bmin, bmax;
181
182 // Get bounding box
183 BoundingLimits(bmin,bmax);
184
185 // Find extent
186 G4BoundingEnvelope bbox(bmin,bmax);
187 return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
188}
void BoundingLimits(G4ThreeVector &pMin, G4ThreeVector &pMax) const

◆ CalculateSurfaceArea()

G4double G4Paraboloid::CalculateSurfaceArea ( ) const
inline

Referenced by GetPointOnSurface().

◆ Clone()

G4VSolid * G4Paraboloid::Clone ( ) const
virtual

Reimplemented from G4VSolid.

Definition at line 861 of file G4Paraboloid.cc.

862{
863 return new G4Paraboloid(*this);
864}

◆ CreatePolyhedron()

G4Polyhedron * G4Paraboloid::CreatePolyhedron ( ) const
virtual

Reimplemented from G4VSolid.

Definition at line 927 of file G4Paraboloid.cc.

928{
929 return new G4PolyhedronParaboloid(r1, r2, dz, 0., twopi);
930}

Referenced by GetPolyhedron().

◆ DescribeYourselfTo()

void G4Paraboloid::DescribeYourselfTo ( G4VGraphicsScene scene) const
virtual

Implements G4VSolid.

Definition at line 922 of file G4Paraboloid.cc.

923{
924 scene.AddSolid(*this);
925}
virtual void AddSolid(const G4Box &)=0

◆ DistanceToIn() [1/2]

G4double G4Paraboloid::DistanceToIn ( const G4ThreeVector p) const
virtual

Implements G4VSolid.

Definition at line 464 of file G4Paraboloid.cc.

465{
466 G4double safz = -dz+std::fabs(p.z());
467 if(safz<0.) { safz=0.; }
468 G4double safr = kInfinity;
469
470 G4double rho = p.x()*p.x()+p.y()*p.y();
471 G4double paraRho = (p.z()-k2)/k1;
472 G4double sqrho = std::sqrt(rho);
473
474 if(paraRho<0.)
475 {
476 safr=sqrho-r2;
477 if(safr>safz) { safz=safr; }
478 return safz;
479 }
480
481 G4double sqprho = std::sqrt(paraRho);
482 G4double dRho = sqrho-sqprho;
483 if(dRho<0.) { return safz; }
484
485 G4double talf = -2.*k1*sqprho;
486 G4double tmp = 1+talf*talf;
487 if(tmp<0.) { return safz; }
488
489 G4double salf = talf/std::sqrt(tmp);
490 safr = std::fabs(dRho*salf);
491 if(safr>safz) { safz=safr; }
492
493 return safz;
494}
double G4double
Definition: G4Types.hh:83

◆ DistanceToIn() [2/2]

G4double G4Paraboloid::DistanceToIn ( const G4ThreeVector p,
const G4ThreeVector v 
) const
virtual

Implements G4VSolid.

Definition at line 331 of file G4Paraboloid.cc.

333{
334 G4double rho2 = p.perp2(), paraRho2 = std::fabs(k1 * p.z() + k2);
336 G4double tolh = 0.5*kCarTolerance;
337
338 if(r2 && p.z() > - tolh + dz)
339 {
340 // If the points is above check for intersection with upper edge.
341
342 if(v.z() < 0)
343 {
344 G4double intersection = (dz - p.z()) / v.z(); // With plane z = dz.
345 if(sqr(p.x() + v.x()*intersection)
346 + sqr(p.y() + v.y()*intersection) < sqr(r2 + 0.5 * kCarTolerance))
347 {
348 if(p.z() < tolh + dz)
349 { return 0; }
350 else
351 { return intersection; }
352 }
353 }
354 else // Direction away, no possibility of intersection
355 {
356 return kInfinity;
357 }
358 }
359 else if(r1 && p.z() < tolh - dz)
360 {
361 // If the points is belove check for intersection with lower edge.
362
363 if(v.z() > 0)
364 {
365 G4double intersection = (-dz - p.z()) / v.z(); // With plane z = -dz.
366 if(sqr(p.x() + v.x()*intersection)
367 + sqr(p.y() + v.y()*intersection) < sqr(r1 + 0.5 * kCarTolerance))
368 {
369 if(p.z() > -tolh - dz)
370 {
371 return 0;
372 }
373 else
374 {
375 return intersection;
376 }
377 }
378 }
379 else // Direction away, no possibility of intersection
380 {
381 return kInfinity;
382 }
383 }
384
385 G4double A = k1 / 2 * v.z() - p.x() * v.x() - p.y() * v.y(),
386 vRho2 = v.perp2(), intersection,
387 B = (k1 * p.z() + k2 - rho2) * vRho2;
388
389 if ( ( (rho2 > paraRho2) && (sqr(rho2-paraRho2-0.25*tol2) > tol2*paraRho2) )
390 || (p.z() < - dz+kCarTolerance)
391 || (p.z() > dz-kCarTolerance) ) // Make sure it's safely outside.
392 {
393 // Is there a problem with squaring rho twice?
394
395 if(vRho2<tol2) // Needs to be treated seperately.
396 {
397 intersection = ((rho2 - k2)/k1 - p.z())/v.z();
398 if(intersection < 0) { return kInfinity; }
399 else if(std::fabs(p.z() + v.z() * intersection) <= dz)
400 {
401 return intersection;
402 }
403 else
404 {
405 return kInfinity;
406 }
407 }
408 else if(A*A + B < 0) // No real intersections.
409 {
410 return kInfinity;
411 }
412 else
413 {
414 intersection = (A - std::sqrt(B + sqr(A))) / vRho2;
415 if(intersection < 0)
416 {
417 return kInfinity;
418 }
419 else if(std::fabs(p.z() + intersection * v.z()) < dz + tolh)
420 {
421 return intersection;
422 }
423 else
424 {
425 return kInfinity;
426 }
427 }
428 }
429 else if(sqr(rho2 - paraRho2 - .25 * tol2) <= tol2 * paraRho2)
430 {
431 // If this is true we're somewhere in the border.
432
433 G4ThreeVector normal(p.x(), p.y(), -k1/2);
434 if(normal.dot(v) <= 0)
435 { return 0; }
436 else
437 { return kInfinity; }
438 }
439 else
440 {
441 std::ostringstream message;
442 if(Inside(p) == kInside)
443 {
444 message << "Point p is inside! - " << GetName() << G4endl;
445 }
446 else
447 {
448 message << "Likely a problem in this function, for solid: " << GetName()
449 << G4endl;
450 }
451 message << " p = " << p * (1/mm) << " mm" << G4endl
452 << " v = " << v * (1/mm) << " mm";
453 G4Exception("G4Paraboloid::DistanceToIn(p,v)", "GeomSolids1002",
454 JustWarning, message);
455 return 0;
456 }
457}
G4double B(G4double temperature)
const G4double A[17]
#define G4endl
Definition: G4ios.hh:57
double perp2() const
EInside Inside(const G4ThreeVector &p) const
G4double kCarTolerance
Definition: G4VSolid.hh:299
@ kInside
Definition: geomdefs.hh:70
T sqr(const T &x)
Definition: templates.hh:128

◆ DistanceToOut() [1/2]

G4double G4Paraboloid::DistanceToOut ( const G4ThreeVector p) const
virtual

Implements G4VSolid.

Definition at line 811 of file G4Paraboloid.cc.

812{
813 G4double safe=0.0,rho,safeR,safeZ ;
814 G4double tanRMax,secRMax,pRMax ;
815
816#ifdef G4SPECSDEBUG
817 if( Inside(p) == kOutside )
818 {
819 G4cout << G4endl ;
820 DumpInfo();
821 std::ostringstream message;
822 G4long oldprc = message.precision(16);
823 message << "Point p is outside !?" << G4endl
824 << "Position:" << G4endl
825 << " p.x() = " << p.x()/mm << " mm" << G4endl
826 << " p.y() = " << p.y()/mm << " mm" << G4endl
827 << " p.z() = " << p.z()/mm << " mm";
828 message.precision(oldprc) ;
829 G4Exception("G4Paraboloid::DistanceToOut(p)", "GeomSolids1002",
830 JustWarning, message);
831 }
832#endif
833
834 rho = p.perp();
835 safeZ = dz - std::fabs(p.z()) ;
836
837 tanRMax = (r2 - r1)*0.5/dz ;
838 secRMax = std::sqrt(1.0 + tanRMax*tanRMax) ;
839 pRMax = tanRMax*p.z() + (r1+r2)*0.5 ;
840 safeR = (pRMax - rho)/secRMax ;
841
842 if (safeZ < safeR) { safe = safeZ; }
843 else { safe = safeR; }
844 if ( safe < 0.5 * kCarTolerance ) { safe = 0; }
845 return safe ;
846}
long G4long
Definition: G4Types.hh:87
G4GLOB_DLL std::ostream G4cout
double perp() const
@ kOutside
Definition: geomdefs.hh:68

◆ DistanceToOut() [2/2]

G4double G4Paraboloid::DistanceToOut ( const G4ThreeVector p,
const G4ThreeVector v,
const G4bool  calcNorm = false,
G4bool validNorm = nullptr,
G4ThreeVector n = nullptr 
) const
virtual

Implements G4VSolid.

Definition at line 500 of file G4Paraboloid.cc.

505{
506 G4double rho2 = p.perp2(), paraRho2 = std::fabs(k1 * p.z() + k2);
507 G4double vRho2 = v.perp2(), intersection;
509 G4double tolh = 0.5*kCarTolerance;
510
511 if(calcNorm) { *validNorm = false; }
512
513 // We have that the particle p follows the line x = p + s * v
514 // meaning x = p.x() + s * v.x(), y = p.y() + s * v.y() and
515 // z = p.z() + s * v.z()
516 // The equation for all points on the surface (surface expanded for
517 // to include all z) x^2 + y^2 = k1 * z + k2 => .. =>
518 // => s = (A +- std::sqrt(A^2 + B)) / vRho2
519 // where:
520 //
521 G4double A = k1 / 2 * v.z() - p.x() * v.x() - p.y() * v.y();
522 //
523 // and:
524 //
525 G4double B = (-rho2 + paraRho2) * vRho2;
526
527 if ( rho2 < paraRho2 && sqr(rho2 - paraRho2 - 0.25 * tol2) > tol2 * paraRho2
528 && std::fabs(p.z()) < dz - kCarTolerance)
529 {
530 // Make sure it's safely inside.
531
532 if(v.z() > 0)
533 {
534 // It's heading upwards, check where it colides with the plane z = dz.
535 // When it does, is that in the surface of the paraboloid.
536 // z = p.z() + variable * v.z() for all points the particle can go.
537 // => variable = (z - p.z()) / v.z() so intersection must be:
538
539 intersection = (dz - p.z()) / v.z();
540 G4ThreeVector ip = p + intersection * v; // Point of intersection.
541
542 if(ip.perp2() < sqr(r2 + kCarTolerance))
543 {
544 if(calcNorm)
545 {
546 *n = G4ThreeVector(0, 0, 1);
547 if(r2 < tolh || ip.perp2() > sqr(r2 - tolh))
548 {
549 *n += G4ThreeVector(ip.x(), ip.y(), - k1 / 2).unit();
550 *n = n->unit();
551 }
552 *validNorm = true;
553 }
554 return intersection;
555 }
556 }
557 else if(v.z() < 0)
558 {
559 // It's heading downwards, check were it colides with the plane z = -dz.
560 // When it does, is that in the surface of the paraboloid.
561 // z = p.z() + variable * v.z() for all points the particle can go.
562 // => variable = (z - p.z()) / v.z() so intersection must be:
563
564 intersection = (-dz - p.z()) / v.z();
565 G4ThreeVector ip = p + intersection * v; // Point of intersection.
566
567 if(ip.perp2() < sqr(r1 + tolh))
568 {
569 if(calcNorm)
570 {
571 *n = G4ThreeVector(0, 0, -1);
572 if(r1 < tolh || ip.perp2() > sqr(r1 - tolh))
573 {
574 *n += G4ThreeVector(ip.x(), ip.y(), - k1 / 2).unit();
575 *n = n->unit();
576 }
577 *validNorm = true;
578 }
579 return intersection;
580 }
581 }
582
583 // Now check for collisions with paraboloid surface.
584
585 if(vRho2 == 0) // Needs to be treated seperately.
586 {
587 intersection = ((rho2 - k2)/k1 - p.z())/v.z();
588 if(calcNorm)
589 {
590 G4ThreeVector intersectionP = p + v * intersection;
591 *n = G4ThreeVector(intersectionP.x(), intersectionP.y(), -k1/2);
592 *n = n->unit();
593
594 *validNorm = true;
595 }
596 return intersection;
597 }
598 else if( ((A <= 0) && (B >= sqr(A) * (sqr(vRho2) - 1))) || (A >= 0))
599 {
600 // intersection = (A + std::sqrt(B + sqr(A))) / vRho2;
601 // The above calculation has a precision problem:
602 // known problem of solving quadratic equation with small A
603
604 A = A/vRho2;
605 B = (k1 * p.z() + k2 - rho2)/vRho2;
606 intersection = B/(-A + std::sqrt(B + sqr(A)));
607 if(calcNorm)
608 {
609 G4ThreeVector intersectionP = p + v * intersection;
610 *n = G4ThreeVector(intersectionP.x(), intersectionP.y(), -k1/2);
611 *n = n->unit();
612 *validNorm = true;
613 }
614 return intersection;
615 }
616 std::ostringstream message;
617 message << "There is no intersection between given line and solid!"
618 << G4endl
619 << " p = " << p << G4endl
620 << " v = " << v;
621 G4Exception("G4Paraboloid::DistanceToOut(p,v,...)", "GeomSolids1002",
622 JustWarning, message);
623
624 return kInfinity;
625 }
626 else if ( (rho2 < paraRho2 + kCarTolerance
627 || sqr(rho2 - paraRho2 - 0.25 * tol2) < tol2 * paraRho2 )
628 && std::fabs(p.z()) < dz + tolh)
629 {
630 // If this is true we're somewhere in the border.
631
632 G4ThreeVector normal = G4ThreeVector (p.x(), p.y(), -k1/2);
633
634 if(std::fabs(p.z()) > dz - tolh)
635 {
636 // We're in the lower or upper edge
637 //
638 if( ((v.z() > 0) && (p.z() > 0)) || ((v.z() < 0) && (p.z() < 0)) )
639 { // If we're heading out of the object that is treated here
640 if(calcNorm)
641 {
642 *validNorm = true;
643 if(p.z() > 0)
644 { *n = G4ThreeVector(0, 0, 1); }
645 else
646 { *n = G4ThreeVector(0, 0, -1); }
647 }
648 return 0;
649 }
650
651 if(v.z() == 0)
652 {
653 // Case where we're moving inside the surface needs to be
654 // treated separately.
655 // Distance until it goes out through a side is returned.
656
657 G4double r = (p.z() > 0)? r2 : r1;
658 G4double pDotV = p.dot(v);
659 A = vRho2 * ( sqr(r) - sqr(p.x()) - sqr(p.y()));
660 intersection = (-pDotV + std::sqrt(A + sqr(pDotV))) / vRho2;
661
662 if(calcNorm)
663 {
664 *validNorm = true;
665
666 *n = (G4ThreeVector(0, 0, p.z()/std::fabs(p.z()))
667 + G4ThreeVector(p.x() + v.x() * intersection, p.y() + v.y()
668 * intersection, -k1/2).unit()).unit();
669 }
670 return intersection;
671 }
672 }
673 //
674 // Problem in the Logic :: Following condition for point on upper surface
675 // and Vz<0 will return 0 (Problem #1015), but
676 // it has to return intersection with parabolic
677 // surface or with lower plane surface (z = -dz)
678 // The logic has to be :: If not found intersection until now,
679 // do not exit but continue to search for possible intersection.
680 // Only for point situated on both borders (Z and parabolic)
681 // this condition has to be taken into account and done later
682 //
683 //
684 // else if(normal.dot(v) >= 0)
685 // {
686 // if(calcNorm)
687 // {
688 // *validNorm = true;
689 // *n = normal.unit();
690 // }
691 // return 0;
692 // }
693
694 if(v.z() > 0)
695 {
696 // Check for collision with upper edge.
697
698 intersection = (dz - p.z()) / v.z();
699 G4ThreeVector ip = p + intersection * v;
700
701 if(ip.perp2() < sqr(r2 - tolh))
702 {
703 if(calcNorm)
704 {
705 *validNorm = true;
706 *n = G4ThreeVector(0, 0, 1);
707 }
708 return intersection;
709 }
710 else if(ip.perp2() < sqr(r2 + tolh))
711 {
712 if(calcNorm)
713 {
714 *validNorm = true;
715 *n = G4ThreeVector(0, 0, 1)
716 + G4ThreeVector(ip.x(), ip.y(), - k1 / 2).unit();
717 *n = n->unit();
718 }
719 return intersection;
720 }
721 }
722 if( v.z() < 0)
723 {
724 // Check for collision with lower edge.
725
726 intersection = (-dz - p.z()) / v.z();
727 G4ThreeVector ip = p + intersection * v;
728
729 if(ip.perp2() < sqr(r1 - tolh))
730 {
731 if(calcNorm)
732 {
733 *validNorm = true;
734 *n = G4ThreeVector(0, 0, -1);
735 }
736 return intersection;
737 }
738 else if(ip.perp2() < sqr(r1 + tolh))
739 {
740 if(calcNorm)
741 {
742 *validNorm = true;
743 *n = G4ThreeVector(0, 0, -1)
744 + G4ThreeVector(ip.x(), ip.y(), - k1 / 2).unit();
745 *n = n->unit();
746 }
747 return intersection;
748 }
749 }
750
751 // Note: comparison with zero below would not be correct !
752 //
753 if(std::fabs(vRho2) > tol2) // precision error in the calculation of
754 { // intersection = (A+std::sqrt(B+sqr(A)))/vRho2
755 A = A/vRho2;
756 B = (k1 * p.z() + k2 - rho2);
757 if(std::fabs(B)>kCarTolerance)
758 {
759 B = (B)/vRho2;
760 intersection = B/(-A + std::sqrt(B + sqr(A)));
761 }
762 else // Point is On both borders: Z and parabolic
763 { // solution depends on normal.dot(v) sign
764 if(normal.dot(v) >= 0)
765 {
766 if(calcNorm)
767 {
768 *validNorm = true;
769 *n = normal.unit();
770 }
771 return 0;
772 }
773 intersection = 2.*A;
774 }
775 }
776 else
777 {
778 intersection = ((rho2 - k2) / k1 - p.z()) / v.z();
779 }
780
781 if(calcNorm)
782 {
783 *validNorm = true;
784 *n = G4ThreeVector(p.x() + intersection * v.x(), p.y()
785 + intersection * v.y(), - k1 / 2);
786 *n = n->unit();
787 }
788 return intersection;
789 }
790 else
791 {
792#ifdef G4SPECSDEBUG
793 if(kOutside == Inside(p))
794 {
795 G4Exception("G4Paraboloid::DistanceToOut(p,v,...)", "GeomSolids1002",
796 JustWarning, "Point p is outside!");
797 }
798 else
799 G4Exception("G4Paraboloid::DistanceToOut(p,v,...)", "GeomSolids1002",
800 JustWarning, "There's an error in this functions code.");
801#endif
802 return kInfinity;
803 }
804 return 0;
805}
CLHEP::Hep3Vector G4ThreeVector
Hep3Vector unit() const
double dot(const Hep3Vector &) const

◆ GetCubicVolume()

G4double G4Paraboloid::GetCubicVolume ( )
inlinevirtual

Reimplemented from G4VSolid.

◆ GetEntityType()

G4GeometryType G4Paraboloid::GetEntityType ( ) const
virtual

Implements G4VSolid.

Definition at line 852 of file G4Paraboloid.cc.

853{
854 return G4String("G4Paraboloid");
855}

◆ GetPointOnSurface()

G4ThreeVector G4Paraboloid::GetPointOnSurface ( ) const
virtual

Reimplemented from G4VSolid.

Definition at line 891 of file G4Paraboloid.cc.

892{
893 G4double A = (fSurfaceArea == 0)? CalculateSurfaceArea(): fSurfaceArea;
894 G4double z = G4RandFlat::shoot(0.,1.);
895 G4double phi = G4RandFlat::shoot(0., twopi);
896 if(pi*(sqr(r1) + sqr(r2))/A >= z)
897 {
898 G4double rho;
899 if(pi * sqr(r1) / A > z)
900 {
901 rho = r1 * std::sqrt(G4RandFlat::shoot(0., 1.));
902 return G4ThreeVector(rho * std::cos(phi), rho * std::sin(phi), -dz);
903 }
904 else
905 {
906 rho = r2 * std::sqrt(G4RandFlat::shoot(0., 1));
907 return G4ThreeVector(rho * std::cos(phi), rho * std::sin(phi), dz);
908 }
909 }
910 else
911 {
912 z = G4RandFlat::shoot(0., 1.)*2*dz - dz;
913 return G4ThreeVector(std::sqrt(z*k1 + k2)*std::cos(phi),
914 std::sqrt(z*k1 + k2)*std::sin(phi), z);
915 }
916}
G4double CalculateSurfaceArea() const

◆ GetPolyhedron()

G4Polyhedron * G4Paraboloid::GetPolyhedron ( ) const
virtual

Reimplemented from G4VSolid.

Definition at line 932 of file G4Paraboloid.cc.

933{
934 if (fpPolyhedron == nullptr ||
938 {
939 G4AutoLock l(&polyhedronMutex);
940 delete fpPolyhedron;
942 fRebuildPolyhedron = false;
943 l.unlock();
944 }
945 return fpPolyhedron;
946}
G4bool fRebuildPolyhedron
G4Polyhedron * CreatePolyhedron() const
G4int GetNumberOfRotationStepsAtTimeOfCreation() const
static G4int GetNumberOfRotationSteps()

◆ GetRadiusMinusZ()

G4double G4Paraboloid::GetRadiusMinusZ ( ) const
inline

◆ GetRadiusPlusZ()

G4double G4Paraboloid::GetRadiusPlusZ ( ) const
inline

◆ GetSurfaceArea()

G4double G4Paraboloid::GetSurfaceArea ( )
inlinevirtual

Reimplemented from G4VSolid.

◆ GetZHalfLength()

G4double G4Paraboloid::GetZHalfLength ( ) const
inline

◆ Inside()

EInside G4Paraboloid::Inside ( const G4ThreeVector p) const
virtual

Implements G4VSolid.

Definition at line 194 of file G4Paraboloid.cc.

195{
196 // First check is the point is above or below the solid.
197 //
198 if(std::fabs(p.z()) > dz + 0.5 * kCarTolerance) { return kOutside; }
199
200 G4double rho2 = p.perp2(),
201 rhoSurfTimesTol2 = (k1 * p.z() + k2) * sqr(kCarTolerance),
202 A = rho2 - ((k1 *p.z() + k2) + 0.25 * kCarTolerance * kCarTolerance);
203
204 if(A < 0 && sqr(A) > rhoSurfTimesTol2)
205 {
206 // Actually checking rho < radius of paraboloid at z = p.z().
207 // We're either inside or in lower/upper cutoff area.
208
209 if(std::fabs(p.z()) > dz - 0.5 * kCarTolerance)
210 {
211 // We're in the upper/lower cutoff area, sides have a paraboloid shape
212 // maybe further checks should be made to make these nicer
213
214 return kSurface;
215 }
216 else
217 {
218 return kInside;
219 }
220 }
221 else if(A <= 0 || sqr(A) < rhoSurfTimesTol2)
222 {
223 // We're in the parabolic surface.
224
225 return kSurface;
226 }
227 else
228 {
229 return kOutside;
230 }
231}
@ kSurface
Definition: geomdefs.hh:69

Referenced by DistanceToIn(), and DistanceToOut().

◆ operator=()

G4Paraboloid & G4Paraboloid::operator= ( const G4Paraboloid rhs)

Definition at line 125 of file G4Paraboloid.cc.

126{
127 // Check assignment to self
128 //
129 if (this == &rhs) { return *this; }
130
131 // Copy base class data
132 //
134
135 // Copy data
136 //
137 fSurfaceArea = rhs.fSurfaceArea; fCubicVolume = rhs.fCubicVolume;
138 dz = rhs.dz; r1 = rhs.r1; r2 = rhs.r2; k1 = rhs.k1; k2 = rhs.k2;
139 fRebuildPolyhedron = false;
140 delete fpPolyhedron; fpPolyhedron = nullptr;
141
142 return *this;
143}
G4VSolid & operator=(const G4VSolid &rhs)
Definition: G4VSolid.cc:107

◆ SetRadiusMinusZ()

void G4Paraboloid::SetRadiusMinusZ ( G4double  R1)
inline

◆ SetRadiusPlusZ()

void G4Paraboloid::SetRadiusPlusZ ( G4double  R2)
inline

◆ SetZHalfLength()

void G4Paraboloid::SetZHalfLength ( G4double  dz)
inline

◆ StreamInfo()

std::ostream & G4Paraboloid::StreamInfo ( std::ostream &  os) const
virtual

Implements G4VSolid.

Definition at line 870 of file G4Paraboloid.cc.

871{
872 G4long oldprc = os.precision(16);
873 os << "-----------------------------------------------------------\n"
874 << " *** Dump for solid - " << GetName() << " ***\n"
875 << " ===================================================\n"
876 << " Solid type: G4Paraboloid\n"
877 << " Parameters: \n"
878 << " z half-axis: " << dz/mm << " mm \n"
879 << " radius at -dz: " << r1/mm << " mm \n"
880 << " radius at dz: " << r2/mm << " mm \n"
881 << "-----------------------------------------------------------\n";
882 os.precision(oldprc);
883
884 return os;
885}

◆ SurfaceNormal()

G4ThreeVector G4Paraboloid::SurfaceNormal ( const G4ThreeVector p) const
virtual

Implements G4VSolid.

Definition at line 237 of file G4Paraboloid.cc.

238{
239 G4ThreeVector n(0, 0, 0);
240 if(std::fabs(p.z()) > dz + 0.5 * kCarTolerance)
241 {
242 // If above or below just return normal vector for the cutoff plane.
243
244 n = G4ThreeVector(0, 0, p.z()/std::fabs(p.z()));
245 }
246 else if(std::fabs(p.z()) > dz - 0.5 * kCarTolerance)
247 {
248 // This means we're somewhere in the plane z = dz or z = -dz.
249 // (As far as the program is concerned anyway.
250
251 if(p.z() < 0) // Are we in upper or lower plane?
252 {
253 if(p.perp2() > sqr(r1 + 0.5 * kCarTolerance))
254 {
255 n = G4ThreeVector(p.x(), p.y(), -k1 / 2).unit();
256 }
257 else if(r1 < 0.5 * kCarTolerance
258 || p.perp2() > sqr(r1 - 0.5 * kCarTolerance))
259 {
260 n = G4ThreeVector(p.x(), p.y(), 0.).unit()
261 + G4ThreeVector(0., 0., -1.).unit();
262 n = n.unit();
263 }
264 else
265 {
266 n = G4ThreeVector(0., 0., -1.);
267 }
268 }
269 else
270 {
271 if(p.perp2() > sqr(r2 + 0.5 * kCarTolerance))
272 {
273 n = G4ThreeVector(p.x(), p.y(), 0.).unit();
274 }
275 else if(r2 < 0.5 * kCarTolerance
276 || p.perp2() > sqr(r2 - 0.5 * kCarTolerance))
277 {
278 n = G4ThreeVector(p.x(), p.y(), 0.).unit()
279 + G4ThreeVector(0., 0., 1.).unit();
280 n = n.unit();
281 }
282 else
283 {
284 n = G4ThreeVector(0., 0., 1.);
285 }
286 }
287 }
288 else
289 {
290 G4double rho2 = p.perp2();
291 G4double rhoSurfTimesTol2 = (k1 * p.z() + k2) * sqr(kCarTolerance);
292 G4double A = rho2 - ((k1 *p.z() + k2)
293 + 0.25 * kCarTolerance * kCarTolerance);
294
295 if(A < 0 && sqr(A) > rhoSurfTimesTol2)
296 {
297 // Actually checking rho < radius of paraboloid at z = p.z().
298 // We're inside.
299
300 if(p.mag2() != 0) { n = p.unit(); }
301 }
302 else if(A <= 0 || sqr(A) < rhoSurfTimesTol2)
303 {
304 // We're in the parabolic surface.
305
306 n = G4ThreeVector(p.x(), p.y(), - k1 / 2).unit();
307 }
308 else
309 {
310 n = G4ThreeVector(p.x(), p.y(), - k1 / 2).unit();
311 }
312 }
313
314 if(n.mag2() == 0)
315 {
316 std::ostringstream message;
317 message << "No normal defined for this point p." << G4endl
318 << " p = " << 1 / mm * p << " mm";
319 G4Exception("G4Paraboloid::SurfaceNormal(p)", "GeomSolids1002",
320 JustWarning, message);
321 }
322 return n;
323}
double mag2() const

Member Data Documentation

◆ fpPolyhedron

G4Polyhedron* G4Paraboloid::fpPolyhedron = nullptr
mutableprotected

Definition at line 141 of file G4Paraboloid.hh.

Referenced by GetPolyhedron(), operator=(), and ~G4Paraboloid().

◆ fRebuildPolyhedron

G4bool G4Paraboloid::fRebuildPolyhedron = false
mutableprotected

Definition at line 140 of file G4Paraboloid.hh.

Referenced by GetPolyhedron(), and operator=().


The documentation for this class was generated from the following files: