Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4Paraboloid.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// Implementation for G4Paraboloid class
27//
28// Author : Lukas Lindroos (CERN), July 2007
29// Revised: Tatiana Nikitina (CERN)
30// --------------------------------------------------------------------
31
32#include "globals.hh"
33
34#include "G4Paraboloid.hh"
35
36#if !(defined(G4GEOM_USE_UPARABOLOID) && defined(G4GEOM_USE_SYS_USOLIDS))
37
38#include "G4VoxelLimits.hh"
39#include "G4AffineTransform.hh"
40#include "G4BoundingEnvelope.hh"
41
42#include "meshdefs.hh"
43
44#include "Randomize.hh"
45
46#include "G4VGraphicsScene.hh"
47#include "G4VisExtent.hh"
48
49#include "G4AutoLock.hh"
50
51namespace
52{
53 G4Mutex polyhedronMutex = G4MUTEX_INITIALIZER;
54}
55
56using namespace CLHEP;
57
58///////////////////////////////////////////////////////////////////////////////
59//
60// constructor - check parameters
61//
63 G4double pDz,
64 G4double pR1,
65 G4double pR2)
66 : G4VSolid(pName)
67{
68 if( (pDz <= 0.) || (pR2 <= pR1) || (pR1 < 0.) )
69 {
70 std::ostringstream message;
71 message << "Invalid dimensions. Negative Input Values or R1>=R2 - "
72 << GetName();
73 G4Exception("G4Paraboloid::G4Paraboloid()", "GeomSolids0002",
74 FatalErrorInArgument, message,
75 "Z half-length must be larger than zero or R1>=R2.");
76 }
77
78 r1 = pR1;
79 r2 = pR2;
80 dz = pDz;
81
82 // r1^2 = k1 * (-dz) + k2
83 // r2^2 = k1 * ( dz) + k2
84 // => r1^2 + r2^2 = k2 + k2 => k2 = (r2^2 + r1^2) / 2
85 // and r2^2 - r1^2 = k1 * dz - k1 * (-dz) => k1 = (r2^2 - r1^2) / 2 / dz
86
87 k1 = (r2 * r2 - r1 * r1) / 2 / dz;
88 k2 = (r2 * r2 + r1 * r1) / 2;
89}
90
91///////////////////////////////////////////////////////////////////////////////
92//
93// Fake default constructor - sets only member data and allocates memory
94// for usage restricted to object persistency.
95//
97 : G4VSolid(a), dz(0.), r1(0.), r2(0.), k1(0.), k2(0.)
98{
99}
100
101///////////////////////////////////////////////////////////////////////////////
102//
103// Destructor
104//
106{
107 delete fpPolyhedron; fpPolyhedron = nullptr;
108}
109
110///////////////////////////////////////////////////////////////////////////////
111//
112// Copy constructor
113//
115 : G4VSolid(rhs),
116 fSurfaceArea(rhs.fSurfaceArea), fCubicVolume(rhs.fCubicVolume),
117 dz(rhs.dz), r1(rhs.r1), r2(rhs.r2), k1(rhs.k1), k2(rhs.k2)
118{
119}
120
121///////////////////////////////////////////////////////////////////////////////
122//
123// Assignment operator
124//
126{
127 // Check assignment to self
128 //
129 if (this == &rhs) { return *this; }
130
131 // Copy base class data
132 //
134
135 // Copy data
136 //
137 fSurfaceArea = rhs.fSurfaceArea; fCubicVolume = rhs.fCubicVolume;
138 dz = rhs.dz; r1 = rhs.r1; r2 = rhs.r2; k1 = rhs.k1; k2 = rhs.k2;
139 fRebuildPolyhedron = false;
140 delete fpPolyhedron; fpPolyhedron = nullptr;
141
142 return *this;
143}
144
145///////////////////////////////////////////////////////////////////////////////
146//
147// Get bounding box
148//
150 G4ThreeVector& pMax) const
151{
152 pMin.set(-r2,-r2,-dz);
153 pMax.set( r2, r2, dz);
154
155 // Check correctness of the bounding box
156 //
157 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z())
158 {
159 std::ostringstream message;
160 message << "Bad bounding box (min >= max) for solid: "
161 << GetName() << " !"
162 << "\npMin = " << pMin
163 << "\npMax = " << pMax;
164 G4Exception("G4Paraboloid::BoundingLimits()", "GeomMgt0001",
165 JustWarning, message);
166 DumpInfo();
167 }
168}
169
170///////////////////////////////////////////////////////////////////////////////
171//
172// Calculate extent under transform and specified limit
173//
174G4bool
176 const G4VoxelLimits& pVoxelLimit,
177 const G4AffineTransform& pTransform,
178 G4double& pMin, G4double& pMax) const
179{
180 G4ThreeVector bmin, bmax;
181
182 // Get bounding box
183 BoundingLimits(bmin,bmax);
184
185 // Find extent
186 G4BoundingEnvelope bbox(bmin,bmax);
187 return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
188}
189
190///////////////////////////////////////////////////////////////////////////////
191//
192// Return whether point inside/outside/on surface
193//
195{
196 // First check is the point is above or below the solid.
197 //
198 if(std::fabs(p.z()) > dz + 0.5 * kCarTolerance) { return kOutside; }
199
200 G4double rho2 = p.perp2(),
201 rhoSurfTimesTol2 = (k1 * p.z() + k2) * sqr(kCarTolerance),
202 A = rho2 - ((k1 *p.z() + k2) + 0.25 * kCarTolerance * kCarTolerance);
203
204 if(A < 0 && sqr(A) > rhoSurfTimesTol2)
205 {
206 // Actually checking rho < radius of paraboloid at z = p.z().
207 // We're either inside or in lower/upper cutoff area.
208
209 if(std::fabs(p.z()) > dz - 0.5 * kCarTolerance)
210 {
211 // We're in the upper/lower cutoff area, sides have a paraboloid shape
212 // maybe further checks should be made to make these nicer
213
214 return kSurface;
215 }
216 else
217 {
218 return kInside;
219 }
220 }
221 else if(A <= 0 || sqr(A) < rhoSurfTimesTol2)
222 {
223 // We're in the parabolic surface.
224
225 return kSurface;
226 }
227 else
228 {
229 return kOutside;
230 }
231}
232
233///////////////////////////////////////////////////////////////////////////////
234//
235// SurfaceNormal
236//
238{
239 G4ThreeVector n(0, 0, 0);
240 if(std::fabs(p.z()) > dz + 0.5 * kCarTolerance)
241 {
242 // If above or below just return normal vector for the cutoff plane.
243
244 n = G4ThreeVector(0, 0, p.z()/std::fabs(p.z()));
245 }
246 else if(std::fabs(p.z()) > dz - 0.5 * kCarTolerance)
247 {
248 // This means we're somewhere in the plane z = dz or z = -dz.
249 // (As far as the program is concerned anyway.
250
251 if(p.z() < 0) // Are we in upper or lower plane?
252 {
253 if(p.perp2() > sqr(r1 + 0.5 * kCarTolerance))
254 {
255 n = G4ThreeVector(p.x(), p.y(), -k1 / 2).unit();
256 }
257 else if(r1 < 0.5 * kCarTolerance
258 || p.perp2() > sqr(r1 - 0.5 * kCarTolerance))
259 {
260 n = G4ThreeVector(p.x(), p.y(), 0.).unit()
261 + G4ThreeVector(0., 0., -1.).unit();
262 n = n.unit();
263 }
264 else
265 {
266 n = G4ThreeVector(0., 0., -1.);
267 }
268 }
269 else
270 {
271 if(p.perp2() > sqr(r2 + 0.5 * kCarTolerance))
272 {
273 n = G4ThreeVector(p.x(), p.y(), 0.).unit();
274 }
275 else if(r2 < 0.5 * kCarTolerance
276 || p.perp2() > sqr(r2 - 0.5 * kCarTolerance))
277 {
278 n = G4ThreeVector(p.x(), p.y(), 0.).unit()
279 + G4ThreeVector(0., 0., 1.).unit();
280 n = n.unit();
281 }
282 else
283 {
284 n = G4ThreeVector(0., 0., 1.);
285 }
286 }
287 }
288 else
289 {
290 G4double rho2 = p.perp2();
291 G4double rhoSurfTimesTol2 = (k1 * p.z() + k2) * sqr(kCarTolerance);
292 G4double A = rho2 - ((k1 *p.z() + k2)
293 + 0.25 * kCarTolerance * kCarTolerance);
294
295 if(A < 0 && sqr(A) > rhoSurfTimesTol2)
296 {
297 // Actually checking rho < radius of paraboloid at z = p.z().
298 // We're inside.
299
300 if(p.mag2() != 0) { n = p.unit(); }
301 }
302 else if(A <= 0 || sqr(A) < rhoSurfTimesTol2)
303 {
304 // We're in the parabolic surface.
305
306 n = G4ThreeVector(p.x(), p.y(), - k1 / 2).unit();
307 }
308 else
309 {
310 n = G4ThreeVector(p.x(), p.y(), - k1 / 2).unit();
311 }
312 }
313
314 if(n.mag2() == 0)
315 {
316 std::ostringstream message;
317 message << "No normal defined for this point p." << G4endl
318 << " p = " << 1 / mm * p << " mm";
319 G4Exception("G4Paraboloid::SurfaceNormal(p)", "GeomSolids1002",
320 JustWarning, message);
321 }
322 return n;
323}
324
325///////////////////////////////////////////////////////////////////////////////
326//
327// Calculate distance to shape from outside, along normalised vector
328// - return kInfinity if no intersection
329//
330//
332 const G4ThreeVector& v ) const
333{
334 G4double rho2 = p.perp2(), paraRho2 = std::fabs(k1 * p.z() + k2);
336 G4double tolh = 0.5*kCarTolerance;
337
338 if(r2 && p.z() > - tolh + dz)
339 {
340 // If the points is above check for intersection with upper edge.
341
342 if(v.z() < 0)
343 {
344 G4double intersection = (dz - p.z()) / v.z(); // With plane z = dz.
345 if(sqr(p.x() + v.x()*intersection)
346 + sqr(p.y() + v.y()*intersection) < sqr(r2 + 0.5 * kCarTolerance))
347 {
348 if(p.z() < tolh + dz)
349 { return 0; }
350 else
351 { return intersection; }
352 }
353 }
354 else // Direction away, no possibility of intersection
355 {
356 return kInfinity;
357 }
358 }
359 else if(r1 && p.z() < tolh - dz)
360 {
361 // If the points is belove check for intersection with lower edge.
362
363 if(v.z() > 0)
364 {
365 G4double intersection = (-dz - p.z()) / v.z(); // With plane z = -dz.
366 if(sqr(p.x() + v.x()*intersection)
367 + sqr(p.y() + v.y()*intersection) < sqr(r1 + 0.5 * kCarTolerance))
368 {
369 if(p.z() > -tolh - dz)
370 {
371 return 0;
372 }
373 else
374 {
375 return intersection;
376 }
377 }
378 }
379 else // Direction away, no possibility of intersection
380 {
381 return kInfinity;
382 }
383 }
384
385 G4double A = k1 / 2 * v.z() - p.x() * v.x() - p.y() * v.y(),
386 vRho2 = v.perp2(), intersection,
387 B = (k1 * p.z() + k2 - rho2) * vRho2;
388
389 if ( ( (rho2 > paraRho2) && (sqr(rho2-paraRho2-0.25*tol2) > tol2*paraRho2) )
390 || (p.z() < - dz+kCarTolerance)
391 || (p.z() > dz-kCarTolerance) ) // Make sure it's safely outside.
392 {
393 // Is there a problem with squaring rho twice?
394
395 if(vRho2<tol2) // Needs to be treated seperately.
396 {
397 intersection = ((rho2 - k2)/k1 - p.z())/v.z();
398 if(intersection < 0) { return kInfinity; }
399 else if(std::fabs(p.z() + v.z() * intersection) <= dz)
400 {
401 return intersection;
402 }
403 else
404 {
405 return kInfinity;
406 }
407 }
408 else if(A*A + B < 0) // No real intersections.
409 {
410 return kInfinity;
411 }
412 else
413 {
414 intersection = (A - std::sqrt(B + sqr(A))) / vRho2;
415 if(intersection < 0)
416 {
417 return kInfinity;
418 }
419 else if(std::fabs(p.z() + intersection * v.z()) < dz + tolh)
420 {
421 return intersection;
422 }
423 else
424 {
425 return kInfinity;
426 }
427 }
428 }
429 else if(sqr(rho2 - paraRho2 - .25 * tol2) <= tol2 * paraRho2)
430 {
431 // If this is true we're somewhere in the border.
432
433 G4ThreeVector normal(p.x(), p.y(), -k1/2);
434 if(normal.dot(v) <= 0)
435 { return 0; }
436 else
437 { return kInfinity; }
438 }
439 else
440 {
441 std::ostringstream message;
442 if(Inside(p) == kInside)
443 {
444 message << "Point p is inside! - " << GetName() << G4endl;
445 }
446 else
447 {
448 message << "Likely a problem in this function, for solid: " << GetName()
449 << G4endl;
450 }
451 message << " p = " << p * (1/mm) << " mm" << G4endl
452 << " v = " << v * (1/mm) << " mm";
453 G4Exception("G4Paraboloid::DistanceToIn(p,v)", "GeomSolids1002",
454 JustWarning, message);
455 return 0;
456 }
457}
458
459///////////////////////////////////////////////////////////////////////////////
460//
461// Calculate distance (<= actual) to closest surface of shape from outside
462// - Return zero if point inside
463//
465{
466 G4double safz = -dz+std::fabs(p.z());
467 if(safz<0.) { safz=0.; }
468 G4double safr = kInfinity;
469
470 G4double rho = p.x()*p.x()+p.y()*p.y();
471 G4double paraRho = (p.z()-k2)/k1;
472 G4double sqrho = std::sqrt(rho);
473
474 if(paraRho<0.)
475 {
476 safr=sqrho-r2;
477 if(safr>safz) { safz=safr; }
478 return safz;
479 }
480
481 G4double sqprho = std::sqrt(paraRho);
482 G4double dRho = sqrho-sqprho;
483 if(dRho<0.) { return safz; }
484
485 G4double talf = -2.*k1*sqprho;
486 G4double tmp = 1+talf*talf;
487 if(tmp<0.) { return safz; }
488
489 G4double salf = talf/std::sqrt(tmp);
490 safr = std::fabs(dRho*salf);
491 if(safr>safz) { safz=safr; }
492
493 return safz;
494}
495
496///////////////////////////////////////////////////////////////////////////////
497//
498// Calculate distance to surface of shape from 'inside'
499//
501 const G4ThreeVector& v,
502 const G4bool calcNorm,
503 G4bool* validNorm,
504 G4ThreeVector* n ) const
505{
506 G4double rho2 = p.perp2(), paraRho2 = std::fabs(k1 * p.z() + k2);
507 G4double vRho2 = v.perp2(), intersection;
509 G4double tolh = 0.5*kCarTolerance;
510
511 if(calcNorm) { *validNorm = false; }
512
513 // We have that the particle p follows the line x = p + s * v
514 // meaning x = p.x() + s * v.x(), y = p.y() + s * v.y() and
515 // z = p.z() + s * v.z()
516 // The equation for all points on the surface (surface expanded for
517 // to include all z) x^2 + y^2 = k1 * z + k2 => .. =>
518 // => s = (A +- std::sqrt(A^2 + B)) / vRho2
519 // where:
520 //
521 G4double A = k1 / 2 * v.z() - p.x() * v.x() - p.y() * v.y();
522 //
523 // and:
524 //
525 G4double B = (-rho2 + paraRho2) * vRho2;
526
527 if ( rho2 < paraRho2 && sqr(rho2 - paraRho2 - 0.25 * tol2) > tol2 * paraRho2
528 && std::fabs(p.z()) < dz - kCarTolerance)
529 {
530 // Make sure it's safely inside.
531
532 if(v.z() > 0)
533 {
534 // It's heading upwards, check where it colides with the plane z = dz.
535 // When it does, is that in the surface of the paraboloid.
536 // z = p.z() + variable * v.z() for all points the particle can go.
537 // => variable = (z - p.z()) / v.z() so intersection must be:
538
539 intersection = (dz - p.z()) / v.z();
540 G4ThreeVector ip = p + intersection * v; // Point of intersection.
541
542 if(ip.perp2() < sqr(r2 + kCarTolerance))
543 {
544 if(calcNorm)
545 {
546 *n = G4ThreeVector(0, 0, 1);
547 if(r2 < tolh || ip.perp2() > sqr(r2 - tolh))
548 {
549 *n += G4ThreeVector(ip.x(), ip.y(), - k1 / 2).unit();
550 *n = n->unit();
551 }
552 *validNorm = true;
553 }
554 return intersection;
555 }
556 }
557 else if(v.z() < 0)
558 {
559 // It's heading downwards, check were it colides with the plane z = -dz.
560 // When it does, is that in the surface of the paraboloid.
561 // z = p.z() + variable * v.z() for all points the particle can go.
562 // => variable = (z - p.z()) / v.z() so intersection must be:
563
564 intersection = (-dz - p.z()) / v.z();
565 G4ThreeVector ip = p + intersection * v; // Point of intersection.
566
567 if(ip.perp2() < sqr(r1 + tolh))
568 {
569 if(calcNorm)
570 {
571 *n = G4ThreeVector(0, 0, -1);
572 if(r1 < tolh || ip.perp2() > sqr(r1 - tolh))
573 {
574 *n += G4ThreeVector(ip.x(), ip.y(), - k1 / 2).unit();
575 *n = n->unit();
576 }
577 *validNorm = true;
578 }
579 return intersection;
580 }
581 }
582
583 // Now check for collisions with paraboloid surface.
584
585 if(vRho2 == 0) // Needs to be treated seperately.
586 {
587 intersection = ((rho2 - k2)/k1 - p.z())/v.z();
588 if(calcNorm)
589 {
590 G4ThreeVector intersectionP = p + v * intersection;
591 *n = G4ThreeVector(intersectionP.x(), intersectionP.y(), -k1/2);
592 *n = n->unit();
593
594 *validNorm = true;
595 }
596 return intersection;
597 }
598 else if( ((A <= 0) && (B >= sqr(A) * (sqr(vRho2) - 1))) || (A >= 0))
599 {
600 // intersection = (A + std::sqrt(B + sqr(A))) / vRho2;
601 // The above calculation has a precision problem:
602 // known problem of solving quadratic equation with small A
603
604 A = A/vRho2;
605 B = (k1 * p.z() + k2 - rho2)/vRho2;
606 intersection = B/(-A + std::sqrt(B + sqr(A)));
607 if(calcNorm)
608 {
609 G4ThreeVector intersectionP = p + v * intersection;
610 *n = G4ThreeVector(intersectionP.x(), intersectionP.y(), -k1/2);
611 *n = n->unit();
612 *validNorm = true;
613 }
614 return intersection;
615 }
616 std::ostringstream message;
617 message << "There is no intersection between given line and solid!"
618 << G4endl
619 << " p = " << p << G4endl
620 << " v = " << v;
621 G4Exception("G4Paraboloid::DistanceToOut(p,v,...)", "GeomSolids1002",
622 JustWarning, message);
623
624 return kInfinity;
625 }
626 else if ( (rho2 < paraRho2 + kCarTolerance
627 || sqr(rho2 - paraRho2 - 0.25 * tol2) < tol2 * paraRho2 )
628 && std::fabs(p.z()) < dz + tolh)
629 {
630 // If this is true we're somewhere in the border.
631
632 G4ThreeVector normal = G4ThreeVector (p.x(), p.y(), -k1/2);
633
634 if(std::fabs(p.z()) > dz - tolh)
635 {
636 // We're in the lower or upper edge
637 //
638 if( ((v.z() > 0) && (p.z() > 0)) || ((v.z() < 0) && (p.z() < 0)) )
639 { // If we're heading out of the object that is treated here
640 if(calcNorm)
641 {
642 *validNorm = true;
643 if(p.z() > 0)
644 { *n = G4ThreeVector(0, 0, 1); }
645 else
646 { *n = G4ThreeVector(0, 0, -1); }
647 }
648 return 0;
649 }
650
651 if(v.z() == 0)
652 {
653 // Case where we're moving inside the surface needs to be
654 // treated separately.
655 // Distance until it goes out through a side is returned.
656
657 G4double r = (p.z() > 0)? r2 : r1;
658 G4double pDotV = p.dot(v);
659 A = vRho2 * ( sqr(r) - sqr(p.x()) - sqr(p.y()));
660 intersection = (-pDotV + std::sqrt(A + sqr(pDotV))) / vRho2;
661
662 if(calcNorm)
663 {
664 *validNorm = true;
665
666 *n = (G4ThreeVector(0, 0, p.z()/std::fabs(p.z()))
667 + G4ThreeVector(p.x() + v.x() * intersection, p.y() + v.y()
668 * intersection, -k1/2).unit()).unit();
669 }
670 return intersection;
671 }
672 }
673 //
674 // Problem in the Logic :: Following condition for point on upper surface
675 // and Vz<0 will return 0 (Problem #1015), but
676 // it has to return intersection with parabolic
677 // surface or with lower plane surface (z = -dz)
678 // The logic has to be :: If not found intersection until now,
679 // do not exit but continue to search for possible intersection.
680 // Only for point situated on both borders (Z and parabolic)
681 // this condition has to be taken into account and done later
682 //
683 //
684 // else if(normal.dot(v) >= 0)
685 // {
686 // if(calcNorm)
687 // {
688 // *validNorm = true;
689 // *n = normal.unit();
690 // }
691 // return 0;
692 // }
693
694 if(v.z() > 0)
695 {
696 // Check for collision with upper edge.
697
698 intersection = (dz - p.z()) / v.z();
699 G4ThreeVector ip = p + intersection * v;
700
701 if(ip.perp2() < sqr(r2 - tolh))
702 {
703 if(calcNorm)
704 {
705 *validNorm = true;
706 *n = G4ThreeVector(0, 0, 1);
707 }
708 return intersection;
709 }
710 else if(ip.perp2() < sqr(r2 + tolh))
711 {
712 if(calcNorm)
713 {
714 *validNorm = true;
715 *n = G4ThreeVector(0, 0, 1)
716 + G4ThreeVector(ip.x(), ip.y(), - k1 / 2).unit();
717 *n = n->unit();
718 }
719 return intersection;
720 }
721 }
722 if( v.z() < 0)
723 {
724 // Check for collision with lower edge.
725
726 intersection = (-dz - p.z()) / v.z();
727 G4ThreeVector ip = p + intersection * v;
728
729 if(ip.perp2() < sqr(r1 - tolh))
730 {
731 if(calcNorm)
732 {
733 *validNorm = true;
734 *n = G4ThreeVector(0, 0, -1);
735 }
736 return intersection;
737 }
738 else if(ip.perp2() < sqr(r1 + tolh))
739 {
740 if(calcNorm)
741 {
742 *validNorm = true;
743 *n = G4ThreeVector(0, 0, -1)
744 + G4ThreeVector(ip.x(), ip.y(), - k1 / 2).unit();
745 *n = n->unit();
746 }
747 return intersection;
748 }
749 }
750
751 // Note: comparison with zero below would not be correct !
752 //
753 if(std::fabs(vRho2) > tol2) // precision error in the calculation of
754 { // intersection = (A+std::sqrt(B+sqr(A)))/vRho2
755 A = A/vRho2;
756 B = (k1 * p.z() + k2 - rho2);
757 if(std::fabs(B)>kCarTolerance)
758 {
759 B = (B)/vRho2;
760 intersection = B/(-A + std::sqrt(B + sqr(A)));
761 }
762 else // Point is On both borders: Z and parabolic
763 { // solution depends on normal.dot(v) sign
764 if(normal.dot(v) >= 0)
765 {
766 if(calcNorm)
767 {
768 *validNorm = true;
769 *n = normal.unit();
770 }
771 return 0;
772 }
773 intersection = 2.*A;
774 }
775 }
776 else
777 {
778 intersection = ((rho2 - k2) / k1 - p.z()) / v.z();
779 }
780
781 if(calcNorm)
782 {
783 *validNorm = true;
784 *n = G4ThreeVector(p.x() + intersection * v.x(), p.y()
785 + intersection * v.y(), - k1 / 2);
786 *n = n->unit();
787 }
788 return intersection;
789 }
790 else
791 {
792#ifdef G4SPECSDEBUG
793 if(kOutside == Inside(p))
794 {
795 G4Exception("G4Paraboloid::DistanceToOut(p,v,...)", "GeomSolids1002",
796 JustWarning, "Point p is outside!");
797 }
798 else
799 G4Exception("G4Paraboloid::DistanceToOut(p,v,...)", "GeomSolids1002",
800 JustWarning, "There's an error in this functions code.");
801#endif
802 return kInfinity;
803 }
804 return 0;
805}
806
807///////////////////////////////////////////////////////////////////////////////
808//
809// Calculate distance (<=actual) to closest surface of shape from inside
810//
812{
813 G4double safe=0.0,rho,safeR,safeZ ;
814 G4double tanRMax,secRMax,pRMax ;
815
816#ifdef G4SPECSDEBUG
817 if( Inside(p) == kOutside )
818 {
819 G4cout << G4endl ;
820 DumpInfo();
821 std::ostringstream message;
822 G4long oldprc = message.precision(16);
823 message << "Point p is outside !?" << G4endl
824 << "Position:" << G4endl
825 << " p.x() = " << p.x()/mm << " mm" << G4endl
826 << " p.y() = " << p.y()/mm << " mm" << G4endl
827 << " p.z() = " << p.z()/mm << " mm";
828 message.precision(oldprc) ;
829 G4Exception("G4Paraboloid::DistanceToOut(p)", "GeomSolids1002",
830 JustWarning, message);
831 }
832#endif
833
834 rho = p.perp();
835 safeZ = dz - std::fabs(p.z()) ;
836
837 tanRMax = (r2 - r1)*0.5/dz ;
838 secRMax = std::sqrt(1.0 + tanRMax*tanRMax) ;
839 pRMax = tanRMax*p.z() + (r1+r2)*0.5 ;
840 safeR = (pRMax - rho)/secRMax ;
841
842 if (safeZ < safeR) { safe = safeZ; }
843 else { safe = safeR; }
844 if ( safe < 0.5 * kCarTolerance ) { safe = 0; }
845 return safe ;
846}
847
848//////////////////////////////////////////////////////////////////////////
849//
850// G4EntityType
851//
853{
854 return G4String("G4Paraboloid");
855}
856
857//////////////////////////////////////////////////////////////////////////
858//
859// Make a clone of the object
860//
862{
863 return new G4Paraboloid(*this);
864}
865
866//////////////////////////////////////////////////////////////////////////
867//
868// Stream object contents to an output stream
869//
870std::ostream& G4Paraboloid::StreamInfo( std::ostream& os ) const
871{
872 G4long oldprc = os.precision(16);
873 os << "-----------------------------------------------------------\n"
874 << " *** Dump for solid - " << GetName() << " ***\n"
875 << " ===================================================\n"
876 << " Solid type: G4Paraboloid\n"
877 << " Parameters: \n"
878 << " z half-axis: " << dz/mm << " mm \n"
879 << " radius at -dz: " << r1/mm << " mm \n"
880 << " radius at dz: " << r2/mm << " mm \n"
881 << "-----------------------------------------------------------\n";
882 os.precision(oldprc);
883
884 return os;
885}
886
887////////////////////////////////////////////////////////////////////
888//
889// GetPointOnSurface
890//
892{
893 G4double A = (fSurfaceArea == 0)? CalculateSurfaceArea(): fSurfaceArea;
894 G4double z = G4RandFlat::shoot(0.,1.);
895 G4double phi = G4RandFlat::shoot(0., twopi);
896 if(pi*(sqr(r1) + sqr(r2))/A >= z)
897 {
898 G4double rho;
899 if(pi * sqr(r1) / A > z)
900 {
901 rho = r1 * std::sqrt(G4RandFlat::shoot(0., 1.));
902 return G4ThreeVector(rho * std::cos(phi), rho * std::sin(phi), -dz);
903 }
904 else
905 {
906 rho = r2 * std::sqrt(G4RandFlat::shoot(0., 1));
907 return G4ThreeVector(rho * std::cos(phi), rho * std::sin(phi), dz);
908 }
909 }
910 else
911 {
912 z = G4RandFlat::shoot(0., 1.)*2*dz - dz;
913 return G4ThreeVector(std::sqrt(z*k1 + k2)*std::cos(phi),
914 std::sqrt(z*k1 + k2)*std::sin(phi), z);
915 }
916}
917
918/////////////////////////////////////////////////////////////////////////////
919//
920// Methods for visualisation
921//
923{
924 scene.AddSolid(*this);
925}
926
928{
929 return new G4PolyhedronParaboloid(r1, r2, dz, 0., twopi);
930}
931
933{
934 if (fpPolyhedron == nullptr ||
938 {
939 G4AutoLock l(&polyhedronMutex);
940 delete fpPolyhedron;
942 fRebuildPolyhedron = false;
943 l.unlock();
944 }
945 return fpPolyhedron;
946}
947
948#endif // !defined(G4GEOM_USE_UPARABOLOID) || !defined(G4GEOM_USE_SYS_USOLIDS)
G4double B(G4double temperature)
@ JustWarning
@ FatalErrorInArgument
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
#define G4MUTEX_INITIALIZER
Definition: G4Threading.hh:85
std::mutex G4Mutex
Definition: G4Threading.hh:81
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:83
long G4long
Definition: G4Types.hh:87
bool G4bool
Definition: G4Types.hh:86
const G4double A[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
double z() const
Hep3Vector unit() const
double x() const
double mag2() const
double y() const
double dot(const Hep3Vector &) const
double perp2() const
void set(double x, double y, double z)
double perp() const
G4bool CalculateExtent(const EAxis pAxis, const G4VoxelLimits &pVoxelLimits, const G4Transform3D &pTransform3D, G4double &pMin, G4double &pMax) const
G4bool fRebuildPolyhedron
G4VSolid * Clone() const
EInside Inside(const G4ThreeVector &p) const
G4Polyhedron * CreatePolyhedron() const
G4double CalculateSurfaceArea() const
G4ThreeVector GetPointOnSurface() const
G4ThreeVector SurfaceNormal(const G4ThreeVector &p) const
G4Paraboloid(const G4String &pName, G4double pDz, G4double pR1, G4double pR2)
Definition: G4Paraboloid.cc:62
void BoundingLimits(G4ThreeVector &pMin, G4ThreeVector &pMax) const
G4bool CalculateExtent(const EAxis pAxis, const G4VoxelLimits &pVoxelLimit, const G4AffineTransform &pTransform, G4double &pmin, G4double &pmax) const
G4Polyhedron * fpPolyhedron
G4GeometryType GetEntityType() const
void DescribeYourselfTo(G4VGraphicsScene &scene) const
G4double DistanceToIn(const G4ThreeVector &p, const G4ThreeVector &v) const
std::ostream & StreamInfo(std::ostream &os) const
G4double DistanceToOut(const G4ThreeVector &p, const G4ThreeVector &v, const G4bool calcNorm=false, G4bool *validNorm=nullptr, G4ThreeVector *n=nullptr) const
G4Polyhedron * GetPolyhedron() const
G4Paraboloid & operator=(const G4Paraboloid &rhs)
virtual ~G4Paraboloid()
G4int GetNumberOfRotationStepsAtTimeOfCreation() const
virtual void AddSolid(const G4Box &)=0
G4String GetName() const
void DumpInfo() const
G4double kCarTolerance
Definition: G4VSolid.hh:299
G4VSolid & operator=(const G4VSolid &rhs)
Definition: G4VSolid.cc:107
static G4int GetNumberOfRotationSteps()
EAxis
Definition: geomdefs.hh:54
EInside
Definition: geomdefs.hh:67
@ kInside
Definition: geomdefs.hh:70
@ kOutside
Definition: geomdefs.hh:68
@ kSurface
Definition: geomdefs.hh:69
Definition: DoubConv.h:17
T sqr(const T &x)
Definition: templates.hh:128