Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ParticleHPFissionFS.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// neutron_hp -- source file
27// J.P. Wellisch, Nov-1996
28// A prototype of the low energy neutron transport model.
29//
30// 12-Apr-06 fix in delayed neutron and photon emission without FS data by T. Koi
31// 07-Sep-11 M. Kelsey -- Follow change to G4HadFinalState interface
32// P. Arce, June-2014 Conversion neutron_hp to particle_hp
33//
34
35#include "G4Exp.hh"
38#include "G4Nucleus.hh"
41#include "G4IonTable.hh"
43
44
46 {
47 secID = G4PhysicsModelCatalog::GetModelID( "model_NeutronHPFission" );
48 hasXsec = false;
49 produceFissionFragments = false;
50 }
51
53 G4String& dirName, G4String& aFSType,
54 G4ParticleDefinition* projectile )
55 {
56 theFS.Init(A, Z, M, dirName, aFSType, projectile);
57 theFC.Init(A, Z, M, dirName, aFSType, projectile);
58 theSC.Init(A, Z, M, dirName, aFSType, projectile);
59 theTC.Init(A, Z, M, dirName, aFSType, projectile);
60 theLC.Init(A, Z, M, dirName, aFSType, projectile);
61
62 theFF.Init(A, Z, M, dirName, aFSType, projectile);
63 if ( G4ParticleHPManager::GetInstance()->GetProduceFissionFragments()
64 && theFF.HasFSData() )
65 {
66 G4cout << "Fission fragment production is now activated in HP package for "
67 << "Z = " << (G4int)Z
68 << ", A = " << (G4int)A
69 << G4endl;
70 G4cout << "As currently modeled this option precludes production of delayed neutrons from fission fragments." << G4endl;
71 produceFissionFragments = true;
72 }
73 }
74
76 {
77 // Because it may change by UI command
79
80 // prepare neutron
81 if ( theResult.Get() == NULL ) theResult.Put( new G4HadFinalState );
82 theResult.Get()->Clear();
83 G4double eKinetic = theTrack.GetKineticEnergy();
84 const G4HadProjectile *incidentParticle = &theTrack;
85 G4ReactionProduct theNeutron( const_cast<G4ParticleDefinition *>(incidentParticle->GetDefinition()) );
86 theNeutron.SetMomentum( incidentParticle->Get4Momentum().vect() );
87 theNeutron.SetKineticEnergy( eKinetic );
88
89 // prepare target
90 G4Nucleus aNucleus;
91 G4ReactionProduct theTarget;
92 G4double targetMass = theFS.GetMass();
93 G4ThreeVector neuVelo = (1./incidentParticle->GetDefinition()->GetPDGMass())*theNeutron.GetMomentum();
94 theTarget = aNucleus.GetBiasedThermalNucleus( targetMass, neuVelo, theTrack.GetMaterial()->GetTemperature());
95 theTarget.SetDefinition( G4IonTable::GetIonTable()->GetIon( G4int(theBaseZ), G4int(theBaseA) , 0.0 ) ); //TESTPHP
96
97 // set neutron and target in the FS classes
98 theFS.SetNeutronRP(theNeutron);
99 theFS.SetTarget(theTarget);
100 theFC.SetNeutronRP(theNeutron);
101 theFC.SetTarget(theTarget);
102 theSC.SetNeutronRP(theNeutron);
103 theSC.SetTarget(theTarget);
104 theTC.SetNeutronRP(theNeutron);
105 theTC.SetTarget(theTarget);
106 theLC.SetNeutronRP(theNeutron);
107 theLC.SetTarget(theTarget);
108 theFF.SetNeutronRP(theNeutron);
109 theFF.SetTarget(theTarget);
110
111 // boost to target rest system and decide on channel.
112 theNeutron.Lorentz(theNeutron, -1*theTarget);
113
114 // dice the photons
115
116 G4DynamicParticleVector * thePhotons;
117 thePhotons = theFS.GetPhotons();
118
119 // select the FS in charge
120
121 eKinetic = theNeutron.GetKineticEnergy();
122 G4double xSec[4];
123 xSec[0] = theFC.GetXsec(eKinetic);
124 xSec[1] = xSec[0]+theSC.GetXsec(eKinetic);
125 xSec[2] = xSec[1]+theTC.GetXsec(eKinetic);
126 xSec[3] = xSec[2]+theLC.GetXsec(eKinetic);
127 G4int it;
128 unsigned int i=0;
129 G4double random = G4UniformRand();
130 if(xSec[3]==0)
131 {
132 it=-1;
133 }
134 else
135 {
136 for(i=0; i<4; i++)
137 {
138 it =i;
139 if(random<xSec[i]/xSec[3]) break;
140 }
141 }
142
143 // dice neutron multiplicities, energies and momenta in Lab. @@
144 // no energy conservation on an event-to-event basis. we rely on the data to be ok. @@
145 // also for mean, we rely on the consistancy of the data. @@
146
147 G4int Prompt=0, delayed=0, all=0;
148 G4DynamicParticleVector * theNeutrons = 0;
149 switch(it) // check logic, and ask, if partials can be assumed to correspond to individual particles @@@
150 {
151 case 0:
152 theFS.SampleNeutronMult(all, Prompt, delayed, eKinetic, 0);
153 if(Prompt==0&&delayed==0) Prompt=all;
154 theNeutrons = theFC.ApplyYourself(Prompt); // delayed always in FS
155 // take 'U' into account explicitly (see 5.4) in the sampling of energy @@@@
156 break;
157 case 1:
158 theFS.SampleNeutronMult(all, Prompt, delayed, eKinetic, 1);
159 if(Prompt==0&&delayed==0) Prompt=all;
160 theNeutrons = theSC.ApplyYourself(Prompt); // delayed always in FS, off done in FSFissionFS
161 break;
162 case 2:
163 theFS.SampleNeutronMult(all, Prompt, delayed, eKinetic, 2);
164 if(Prompt==0&&delayed==0) Prompt=all;
165 theNeutrons = theTC.ApplyYourself(Prompt); // delayed always in FS
166 break;
167 case 3:
168 theFS.SampleNeutronMult(all, Prompt, delayed, eKinetic, 3);
169 if(Prompt==0&&delayed==0) Prompt=all;
170 theNeutrons = theLC.ApplyYourself(Prompt); // delayed always in FS
171 break;
172 default:
173 break;
174 }
175
176 // dice delayed neutrons and photons, and fallback
177 // for Prompt in case channel had no FS data; add all paricles to FS.
178
179 if ( produceFissionFragments ) delayed=0;
180
181 G4double * theDecayConstants;
182
183 if( theNeutrons != 0)
184 {
185 theDecayConstants = new G4double[delayed];
186 for(i=0; i<theNeutrons->size(); ++i)
187 {
188 theResult.Get()->AddSecondary(theNeutrons->operator[](i), secID);
189 }
190 delete theNeutrons;
191
192 G4DynamicParticleVector * theDelayed = 0;
193 theDelayed = theFS.ApplyYourself(0, delayed, theDecayConstants);
194 for(i=0; i<theDelayed->size(); i++)
195 {
196 G4double time = -G4Log(G4UniformRand())/theDecayConstants[i];
197 time += theTrack.GetGlobalTime();
198 theResult.Get()->AddSecondary(theDelayed->operator[](i), secID);
200 }
201 delete theDelayed;
202 }
203 else
204 {
205 theFS.SampleNeutronMult(all, Prompt, delayed, eKinetic, 0);
206 theDecayConstants = new G4double[delayed];
207 if(Prompt==0&&delayed==0) Prompt=all;
208 theNeutrons = theFS.ApplyYourself(Prompt, delayed, theDecayConstants);
209 G4int i0;
210 for(i0=0; i0<Prompt; ++i0)
211 {
212 theResult.Get()->AddSecondary(theNeutrons->operator[](i0), secID);
213 }
214
215 for(i0=Prompt; i0<Prompt+delayed; ++i0)
216 {
217 // Protect against the very rare case of division by zero
218 G4double time = 0.0;
219 if ( theDecayConstants[i0-Prompt] > 1.0e-30 ) {
220 time = -G4Log(G4UniformRand())/theDecayConstants[i0-Prompt];
221 } else {
223 ed << " theDecayConstants[i0-Prompt]=" << theDecayConstants[i0-Prompt]
224 << " -> cannot sample the time : set it to 0.0 !" << G4endl;
225 G4Exception( "G4ParticleHPFissionFS::ApplyYourself ", "HAD_FISSIONHP_001", JustWarning, ed );
226 }
227
228 time += theTrack.GetGlobalTime();
229 theResult.Get()->AddSecondary(theNeutrons->operator[](i0), secID);
231 }
232 delete theNeutrons;
233 }
234 delete [] theDecayConstants;
235
236 std::size_t nPhotons = 0;
237 if(thePhotons!=0)
238 {
239 nPhotons = thePhotons->size();
240 for(i=0; i<nPhotons; ++i)
241 {
242 theResult.Get()->AddSecondary(thePhotons->operator[](i), secID);
243 }
244 delete thePhotons;
245 }
246
247 // finally deal with local energy depositions.
248
249 G4ParticleHPFissionERelease * theERelease = theFS.GetEnergyRelease();
250 G4double eDepByFragments = theERelease->GetFragmentKinetic();
251 //theResult.SetLocalEnergyDeposit(eDepByFragments);
252 if ( !produceFissionFragments ) theResult.Get()->SetLocalEnergyDeposit(eDepByFragments);
253 // clean up the primary neutron
255
256 if ( produceFissionFragments )
257 {
258 G4int fragA_Z=0;
259 G4int fragA_A=0;
260 G4int fragA_M=0;
261 // System is traget rest!
262 theFF.GetAFissionFragment(eKinetic,fragA_Z,fragA_A,fragA_M);
263 G4int fragB_Z=(G4int)theBaseZ-fragA_Z;
264 G4int fragB_A=(G4int)theBaseA-fragA_A-Prompt;
265
267 //Excitation energy is not taken into account
268 G4ParticleDefinition* pdA = pt->GetIon( fragA_Z , fragA_A , 0.0 );
269 G4ParticleDefinition* pdB = pt->GetIon( fragB_Z , fragB_A , 0.0 );
270
271 //Isotropic Distribution
272 G4double phi = twopi*G4UniformRand();
273 // Bug #1745 DHW G4double theta = pi*G4UniformRand();
274 G4double costheta = 2.*G4UniformRand()-1.;
275 G4double theta = std::acos(costheta);
276 G4double sinth = std::sin(theta);
277 G4ThreeVector direction(sinth*std::cos(phi), sinth*std::sin(phi), costheta);
278
279 // Just use ENDF value for this
280 G4double ER = eDepByFragments;
281 G4double ma = pdA->GetPDGMass();
282 G4double mb = pdB->GetPDGMass();
283 G4double EA = ER / ( 1 + ma/mb);
284 G4double EB = ER - EA;
285 G4DynamicParticle* dpA = new G4DynamicParticle( pdA , direction , EA);
286 G4DynamicParticle* dpB = new G4DynamicParticle( pdB , -direction , EB);
289 }
290
291 return theResult.Get();
292 }
std::vector< G4DynamicParticle * > G4DynamicParticleVector
@ JustWarning
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
@ stopAndKill
G4double G4Log(G4double x)
Definition: G4Log.hh:227
#define M(row, col)
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
const G4double A[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector vect() const
value_type & Get() const
Definition: G4Cache.hh:315
void Put(const value_type &val) const
Definition: G4Cache.hh:321
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
std::size_t GetNumberOfSecondaries() const
G4HadSecondary * GetSecondary(size_t i)
void SetLocalEnergyDeposit(G4double aE)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetGlobalTime() const
void SetTime(G4double aT)
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
Definition: G4IonTable.cc:522
static G4IonTable * GetIonTable()
Definition: G4IonTable.cc:170
G4double GetTemperature() const
Definition: G4Material.hh:177
G4ReactionProduct GetBiasedThermalNucleus(G4double aMass, G4ThreeVector aVelocity, G4double temp=-1) const
Definition: G4Nucleus.cc:118
G4DynamicParticleVector * ApplyYourself(G4int nNeutrons)
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType, G4ParticleDefinition *projectile)
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType, G4ParticleDefinition *)
void GetAFissionFragment(G4double, G4int &, G4int &, G4int &)
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType, G4ParticleDefinition *)
G4DynamicParticleVector * ApplyYourself(G4int Prompt, G4int delayed, G4double *decayconst)
void SampleNeutronMult(G4int &all, G4int &Prompt, G4int &delayed, G4double energy, G4int off)
G4ParticleHPFissionERelease * GetEnergyRelease()
void SetNeutronRP(const G4ReactionProduct &aNeutron)
void SetTarget(const G4ReactionProduct &aTarget)
G4DynamicParticleVector * GetPhotons()
G4Cache< G4HadFinalState * > theResult
virtual G4double GetXsec(G4double anEnergy)
void SetTarget(const G4ReactionProduct &aTarget)
void SetNeutronRP(const G4ReactionProduct &aNeutron)
G4HadFinalState * ApplyYourself(const G4HadProjectile &theTrack)
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType, G4ParticleDefinition *)
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType, G4ParticleDefinition *projectile)
G4DynamicParticleVector * ApplyYourself(G4int NNeutrons)
static G4ParticleHPManager * GetInstance()
G4DynamicParticleVector * ApplyYourself(G4int NNeutrons)
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType, G4ParticleDefinition *projectile)
G4DynamicParticleVector * ApplyYourself(G4int NNeutrons)
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType, G4ParticleDefinition *projectile)
static G4int GetModelID(const G4int modelIndex)
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void Lorentz(const G4ReactionProduct &p1, const G4ReactionProduct &p2)
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)