Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4MuNeutrinoNucleusProcess Class Reference

#include <G4MuNeutrinoNucleusProcess.hh>

+ Inheritance diagram for G4MuNeutrinoNucleusProcess:

Public Member Functions

 G4MuNeutrinoNucleusProcess (const G4String &anEnvelopeName, const G4String &procName="muNuNucleus")
 
 ~G4MuNeutrinoNucleusProcess () override=default
 
G4double PostStepGetPhysicalInteractionLength (const G4Track &track, G4double previousStepSize, G4ForceCondition *condition) override
 
G4double GetMeanFreePath (const G4Track &aTrack, G4double, G4ForceCondition *) override
 
G4VParticleChangePostStepDoIt (const G4Track &aTrack, const G4Step &aStep) override
 
void ProcessDescription (std::ostream &outFile) const override
 
void SetLowestEnergy (G4double)
 
void SetBiasingFactors (G4double bfCc, G4double bfNc)
 
void SetBiasingFactor (G4double bf)
 
G4MuNeutrinoNucleusProcessoperator= (const G4MuNeutrinoNucleusProcess &right)=delete
 
 G4MuNeutrinoNucleusProcess (const G4MuNeutrinoNucleusProcess &)=delete
 
- Public Member Functions inherited from G4HadronicProcess
 G4HadronicProcess (const G4String &processName="Hadronic", G4ProcessType procType=fHadronic)
 
 G4HadronicProcess (const G4String &processName, G4HadronicProcessType subType)
 
 ~G4HadronicProcess () override
 
void RegisterMe (G4HadronicInteraction *a)
 
G4double GetElementCrossSection (const G4DynamicParticle *part, const G4Element *elm, const G4Material *mat=nullptr)
 
G4double GetMicroscopicCrossSection (const G4DynamicParticle *part, const G4Element *elm, const G4Material *mat=nullptr)
 
void StartTracking (G4Track *track) override
 
void PreparePhysicsTable (const G4ParticleDefinition &) override
 
void BuildPhysicsTable (const G4ParticleDefinition &) override
 
void DumpPhysicsTable (const G4ParticleDefinition &p)
 
void AddDataSet (G4VCrossSectionDataSet *aDataSet)
 
std::vector< G4HadronicInteraction * > & GetHadronicInteractionList ()
 
G4HadronicInteractionGetHadronicModel (const G4String &)
 
G4HadronicInteractionGetHadronicInteraction () const
 
const G4NucleusGetTargetNucleus () const
 
G4NucleusGetTargetNucleusPointer ()
 
const G4IsotopeGetTargetIsotope ()
 
G4double ComputeCrossSection (const G4ParticleDefinition *, const G4Material *, const G4double kinEnergy)
 
G4HadXSType CrossSectionType () const
 
void SetCrossSectionType (G4HadXSType val)
 
void BiasCrossSectionByFactor (G4double aScale)
 
void MultiplyCrossSectionBy (G4double factor)
 
G4double CrossSectionFactor () const
 
void SetIntegral (G4bool val)
 
void SetEpReportLevel (G4int level)
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 
std::pair< G4double, G4doubleGetEnergyMomentumCheckLevels () const
 
G4CrossSectionDataStoreGetCrossSectionDataStore ()
 
std::vector< G4TwoPeaksHadXS * > * TwoPeaksXS () const
 
std::vector< G4double > * EnergyOfCrossSectionMax () const
 
G4HadronicProcessoperator= (const G4HadronicProcess &right)=delete
 
 G4HadronicProcess (const G4HadronicProcess &)=delete
 
- Public Member Functions inherited from G4VDiscreteProcess
 G4VDiscreteProcess (const G4String &aName, G4ProcessType aType=fNotDefined)
 
 G4VDiscreteProcess (G4VDiscreteProcess &)
 
virtual ~G4VDiscreteProcess ()
 
G4VDiscreteProcessoperator= (const G4VDiscreteProcess &)=delete
 
virtual G4double AlongStepGetPhysicalInteractionLength (const G4Track &, G4double, G4double, G4double &, G4GPILSelection *)
 
virtual G4double AtRestGetPhysicalInteractionLength (const G4Track &, G4ForceCondition *)
 
virtual G4VParticleChangeAtRestDoIt (const G4Track &, const G4Step &)
 
virtual G4VParticleChangeAlongStepDoIt (const G4Track &, const G4Step &)
 
virtual G4double GetCrossSection (const G4double, const G4MaterialCutsCouple *)
 
virtual G4double MinPrimaryEnergy (const G4ParticleDefinition *, const G4Material *)
 
- Public Member Functions inherited from G4VProcess
 G4VProcess (const G4String &aName="NoName", G4ProcessType aType=fNotDefined)
 
 G4VProcess (const G4VProcess &right)
 
virtual ~G4VProcess ()
 
G4VProcessoperator= (const G4VProcess &)=delete
 
G4bool operator== (const G4VProcess &right) const
 
G4bool operator!= (const G4VProcess &right) const
 
G4double GetCurrentInteractionLength () const
 
void SetPILfactor (G4double value)
 
G4double GetPILfactor () const
 
G4double AlongStepGPIL (const G4Track &track, G4double previousStepSize, G4double currentMinimumStep, G4double &proposedSafety, G4GPILSelection *selection)
 
G4double AtRestGPIL (const G4Track &track, G4ForceCondition *condition)
 
G4double PostStepGPIL (const G4Track &track, G4double previousStepSize, G4ForceCondition *condition)
 
virtual G4bool IsApplicable (const G4ParticleDefinition &)
 
virtual G4bool StorePhysicsTable (const G4ParticleDefinition *, const G4String &, G4bool)
 
virtual G4bool RetrievePhysicsTable (const G4ParticleDefinition *, const G4String &, G4bool)
 
const G4StringGetPhysicsTableFileName (const G4ParticleDefinition *, const G4String &directory, const G4String &tableName, G4bool ascii=false)
 
const G4StringGetProcessName () const
 
G4ProcessType GetProcessType () const
 
void SetProcessType (G4ProcessType)
 
G4int GetProcessSubType () const
 
void SetProcessSubType (G4int)
 
virtual const G4VProcessGetCreatorProcess () const
 
virtual void EndTracking ()
 
virtual void SetProcessManager (const G4ProcessManager *)
 
virtual const G4ProcessManagerGetProcessManager ()
 
virtual void ResetNumberOfInteractionLengthLeft ()
 
G4double GetNumberOfInteractionLengthLeft () const
 
G4double GetTotalNumberOfInteractionLengthTraversed () const
 
G4bool isAtRestDoItIsEnabled () const
 
G4bool isAlongStepDoItIsEnabled () const
 
G4bool isPostStepDoItIsEnabled () const
 
virtual void DumpInfo () const
 
void SetVerboseLevel (G4int value)
 
G4int GetVerboseLevel () const
 
virtual void SetMasterProcess (G4VProcess *masterP)
 
const G4VProcessGetMasterProcess () const
 
virtual void BuildWorkerPhysicsTable (const G4ParticleDefinition &part)
 
virtual void PrepareWorkerPhysicsTable (const G4ParticleDefinition &)
 

Additional Inherited Members

- Static Public Member Functions inherited from G4VProcess
static const G4StringGetProcessTypeName (G4ProcessType)
 
- Protected Member Functions inherited from G4HadronicProcess
G4HadronicInteractionChooseHadronicInteraction (const G4HadProjectile &aHadProjectile, G4Nucleus &aTargetNucleus, const G4Material *aMaterial, const G4Element *anElement)
 
G4double GetLastCrossSection ()
 
void FillResult (G4HadFinalState *aR, const G4Track &aT)
 
void DumpState (const G4Track &, const G4String &, G4ExceptionDescription &)
 
G4HadFinalStateCheckResult (const G4HadProjectile &thePro, const G4Nucleus &targetNucleus, G4HadFinalState *result)
 
void CheckEnergyMomentumConservation (const G4Track &, const G4Nucleus &)
 
- Protected Member Functions inherited from G4VDiscreteProcess
- Protected Member Functions inherited from G4VProcess
void SubtractNumberOfInteractionLengthLeft (G4double prevStepSize)
 
void ClearNumberOfInteractionLengthLeft ()
 
- Protected Attributes inherited from G4HadronicProcess
G4HadProjectile thePro
 
G4ParticleChangetheTotalResult
 
G4CrossSectionDataStoretheCrossSectionDataStore
 
G4double fWeight = 1.0
 
G4double aScaleFactor = 1.0
 
G4double theLastCrossSection = 0.0
 
G4double mfpKinEnergy = DBL_MAX
 
G4int epReportLevel = 0
 
G4HadXSType fXSType = fHadNoIntegral
 
- Protected Attributes inherited from G4VProcess
const G4ProcessManageraProcessManager = nullptr
 
G4VParticleChangepParticleChange = nullptr
 
G4ParticleChange aParticleChange
 
G4double theNumberOfInteractionLengthLeft = -1.0
 
G4double currentInteractionLength = -1.0
 
G4double theInitialNumberOfInteractionLength = -1.0
 
G4String theProcessName
 
G4String thePhysicsTableFileName
 
G4ProcessType theProcessType = fNotDefined
 
G4int theProcessSubType = -1
 
G4double thePILfactor = 1.0
 
G4int verboseLevel = 0
 
G4bool enableAtRestDoIt = true
 
G4bool enableAlongStepDoIt = true
 
G4bool enablePostStepDoIt = true
 

Detailed Description

Definition at line 50 of file G4MuNeutrinoNucleusProcess.hh.

Constructor & Destructor Documentation

◆ G4MuNeutrinoNucleusProcess() [1/2]

G4MuNeutrinoNucleusProcess::G4MuNeutrinoNucleusProcess ( const G4String & anEnvelopeName,
const G4String & procName = "muNuNucleus" )

Definition at line 65 of file G4MuNeutrinoNucleusProcess.cc.

67{
68 lowestEnergy = 1.*keV;
69 fEnvelopeName = anEnvelopeName;
70 fTotXsc = new G4MuNeutrinoNucleusTotXsc();
72 safetyHelper->InitialiseHelper();
73}
G4HadronicProcess(const G4String &processName="Hadronic", G4ProcessType procType=fHadronic)
static G4TransportationManager * GetTransportationManager()
G4SafetyHelper * GetSafetyHelper() const

◆ ~G4MuNeutrinoNucleusProcess()

G4MuNeutrinoNucleusProcess::~G4MuNeutrinoNucleusProcess ( )
overridedefault

◆ G4MuNeutrinoNucleusProcess() [2/2]

G4MuNeutrinoNucleusProcess::G4MuNeutrinoNucleusProcess ( const G4MuNeutrinoNucleusProcess & )
delete

Member Function Documentation

◆ GetMeanFreePath()

G4double G4MuNeutrinoNucleusProcess::GetMeanFreePath ( const G4Track & aTrack,
G4double ,
G4ForceCondition *  )
overridevirtual

Reimplemented from G4HadronicProcess.

Definition at line 103 of file G4MuNeutrinoNucleusProcess.cc.

105{
106 //G4cout << "GetMeanFreePath " << aTrack.GetDefinition()->GetParticleName()
107 // << " Ekin= " << aTrack.GetKineticEnergy() << G4endl;
110 aTrack.GetMaterial());
111
112 if( rName == fEnvelopeName && fNuNuclTotXscBias > 1.)
113 {
114 totxsc *= fNuNuclTotXscBias;
115 }
116 G4double res = (totxsc>0.0) ? 1.0/totxsc : DBL_MAX;
117 //G4cout << " xsection= " << totxsc << G4endl;
118 return res;
119}
double G4double
Definition G4Types.hh:83
G4double ComputeCrossSection(const G4DynamicParticle *, const G4Material *)
G4CrossSectionDataStore * GetCrossSectionDataStore()
G4Region * GetRegion() const
const G4String & GetName() const
G4VPhysicalVolume * GetPhysicalVolume() const
G4StepPoint * GetPreStepPoint() const
G4Material * GetMaterial() const
const G4DynamicParticle * GetDynamicParticle() const
const G4Step * GetStep() const
G4LogicalVolume * GetLogicalVolume() const
#define DBL_MAX
Definition templates.hh:62

◆ operator=()

G4MuNeutrinoNucleusProcess & G4MuNeutrinoNucleusProcess::operator= ( const G4MuNeutrinoNucleusProcess & right)
delete

◆ PostStepDoIt()

G4VParticleChange * G4MuNeutrinoNucleusProcess::PostStepDoIt ( const G4Track & aTrack,
const G4Step & aStep )
overridevirtual

! is not needed for models inheriting G4MuNeutrinoNucleus

Reimplemented from G4HadronicProcess.

Definition at line 133 of file G4MuNeutrinoNucleusProcess.cc.

134{
135 G4String rName = track.GetStep()->GetPreStepPoint()->GetPhysicalVolume()->GetLogicalVolume()->GetRegion()->GetName();
136
137 if( rName != fEnvelopeName )
138 {
139 if( verboseLevel > 0 )
140 {
141 G4cout<<"Go out from G4MuNeutrinoNucleusProcess::PostStepDoIt: wrong volume "<<G4endl;
142 }
143 return G4VDiscreteProcess::PostStepDoIt( track, step );
144 }
147 G4double weight = track.GetWeight();
149
150 if( track.GetTrackStatus() != fAlive )
151 {
152 return theTotalResult;
153 }
154 // Next check for illegal track status
155 //
156 if (track.GetTrackStatus() != fAlive &&
157 track.GetTrackStatus() != fSuspend)
158 {
159 if (track.GetTrackStatus() == fStopAndKill ||
160 track.GetTrackStatus() == fKillTrackAndSecondaries ||
161 track.GetTrackStatus() == fPostponeToNextEvent)
162 {
164 ed << "G4HadronicProcess: track in unusable state - "
165 << track.GetTrackStatus() << G4endl;
166 ed << "G4HadronicProcess: returning unchanged track " << G4endl;
167 DumpState(track,"PostStepDoIt",ed);
168 G4Exception("G4HadronicProcess::PostStepDoIt", "had004", JustWarning, ed);
169 }
170 // No warning for fStopButAlive which is a legal status here
171 return theTotalResult;
172 }
173
174 // For elastic scattering, _any_ result is considered an interaction
176
177 G4double kineticEnergy = track.GetKineticEnergy();
178 const G4DynamicParticle* dynParticle = track.GetDynamicParticle();
179 const G4ParticleDefinition* part = dynParticle->GetDefinition();
180 const G4String pName = part->GetParticleName();
181
182 // NOTE: Very low energy scatters were causing numerical (FPE) errors
183 // in earlier releases; these limits have not been changed since.
184
185 if ( kineticEnergy <= lowestEnergy ) return theTotalResult;
186
187 const G4Material* material = track.GetMaterial();
188 G4Nucleus* targNucleus = GetTargetNucleusPointer();
189
190 ///// uniform random spread of the neutrino interaction point ////////////
191
192 const G4StepPoint* pPostStepPoint = step.GetPostStepPoint();
193 const G4DynamicParticle* aParticle = track.GetDynamicParticle();
194 G4ThreeVector position = pPostStepPoint->GetPosition(), newPosition=position;
195 G4ParticleMomentum direction = aParticle->GetMomentumDirection();
196
197 if( fNuNuclCcBias > 1.0 || fNuNuclNcBias > 1.0) // = true, if fBiasingfactor != 1., i.e. xsc is biased
198 {
199 const G4RotationMatrix* rotM = pPostStepPoint->GetTouchable()->GetRotation();
200 G4ThreeVector transl = pPostStepPoint->GetTouchable()->GetTranslation();
201 G4AffineTransform transform = G4AffineTransform(rotM,transl);
202 transform.Invert();
203
204 G4ThreeVector localP = transform.TransformPoint(position);
205 G4ThreeVector localV = transform.TransformAxis(direction);
206
207 G4double forward = track.GetVolume()->GetLogicalVolume()->GetSolid()->DistanceToOut(localP, localV);
208 G4double backward = track.GetVolume()->GetLogicalVolume()->GetSolid()->DistanceToOut(localP, -localV);
209
210 G4double distance = forward+backward;
211
212 // G4cout<<distance/cm<<", ";
213
214 // uniform sampling of nu-e interaction point
215 // along neutrino direction in current volume
216
217 G4double range = -backward+G4UniformRand()*distance;
218
219 newPosition = position + range*direction;
220
221 safetyHelper->ReLocateWithinVolume(newPosition);
222
223 theTotalResult->ProposePosition(newPosition); // G4Exception : GeomNav1002
224 }
225 G4HadProjectile theProj( track );
226 G4HadronicInteraction* hadi = nullptr;
227 G4HadFinalState* result = nullptr;
228 const G4Element* elm =
229 GetCrossSectionDataStore()->SampleZandA(dynParticle, material, *targNucleus);
230 G4int ZZ = elm->GetZasInt();
231 fTotXsc->GetElementCrossSection(dynParticle, ZZ, material);
232 G4double ccTotRatio = fTotXsc->GetCcTotRatio();
233
234 if( G4UniformRand() < ccTotRatio ) // Cc-model
235 {
236 // Initialize the hadronic projectile from the track
237 thePro.Initialise(track);
238
239 if (pName == "nu_mu" ) hadi = (GetHadronicInteractionList())[0];
240 else hadi = (GetHadronicInteractionList())[2];
241
242 result = hadi->ApplyYourself( thePro, *targNucleus);
243
245
247
248 FillResult(result, track);
249 }
250 else // Nc-model
251 {
252 if (pName == "nu_mu" ) hadi = (GetHadronicInteractionList())[1];
253 else hadi = (GetHadronicInteractionList())[3];
254
255 std::size_t idx = track.GetMaterialCutsCouple()->GetIndex();
256
258
259 hadi->SetRecoilEnergyThreshold(tcut);
260
261 if( verboseLevel > 1 )
262 {
263 G4cout << "G4MuNeutrinoNucleusProcess::PostStepDoIt for "
264 << part->GetParticleName()
265 << " in " << material->GetName()
266 << " Target Z= " << targNucleus->GetZ_asInt()
267 << " A= " << targNucleus->GetA_asInt() << G4endl;
268 }
269 try
270 {
271 result = hadi->ApplyYourself( theProj, *targNucleus);
272 }
273 catch(G4HadronicException & aR)
274 {
276 aR.Report(ed);
277 ed << "Call for " << hadi->GetModelName() << G4endl;
278 ed << " Z= "
279 << targNucleus->GetZ_asInt()
280 << " A= " << targNucleus->GetA_asInt() << G4endl;
281 DumpState(track,"ApplyYourself",ed);
282 ed << " ApplyYourself failed" << G4endl;
283 G4Exception("G4MuNeutrinoNucleusProcess::PostStepDoIt", "had006",
284 FatalException, ed);
285 }
286 // directions
287
288 G4ThreeVector indir = track.GetMomentumDirection();
289 G4double phi = CLHEP::twopi*G4UniformRand();
290 G4ThreeVector it(0., 0., 1.);
291 G4ThreeVector outdir = result->GetMomentumChange();
292
293 if(verboseLevel>1)
294 {
295 G4cout << "Efin= " << result->GetEnergyChange()
296 << " de= " << result->GetLocalEnergyDeposit()
297 << " nsec= " << result->GetNumberOfSecondaries()
298 << " dir= " << outdir
299 << G4endl;
300 }
301 // energies
302
303 G4double edep = result->GetLocalEnergyDeposit();
304 G4double efinal = result->GetEnergyChange();
305
306 if(efinal < 0.0) { efinal = 0.0; }
307 if(edep < 0.0) { edep = 0.0; }
308
309 // NOTE: Very low energy scatters were causing numerical (FPE) errors
310 // in earlier releases; these limits have not been changed since.
311
312 if(efinal <= lowestEnergy)
313 {
314 edep += efinal;
315 efinal = 0.0;
316 }
317 // primary change
318
320
321 G4TrackStatus status = track.GetTrackStatus();
322
323 if(efinal > 0.0)
324 {
325 outdir.rotate(phi, it);
326 outdir.rotateUz(indir);
328 }
329 else
330 {
331 if( part->GetProcessManager()->GetAtRestProcessVector()->size() > 0)
332 {
333 status = fStopButAlive;
334 }
335 else
336 {
337 status = fStopAndKill;
338 }
340 }
341 //G4cout << "Efinal= " << efinal << " TrackStatus= " << status << G4endl;
342
344
345 // recoil
346
347 if( result->GetNumberOfSecondaries() > 0 )
348 {
349 G4DynamicParticle* p = result->GetSecondary(0)->GetParticle();
350
351 if(p->GetKineticEnergy() > tcut)
352 {
355
356 // G4cout << "recoil " << pdir << G4endl;
357 //!! is not needed for models inheriting G4MuNeutrinoNucleus
358
359 pdir.rotate(phi, it);
360 pdir.rotateUz(indir);
361
362 // G4cout << "recoil rotated " << pdir << G4endl;
363
364 p->SetMomentumDirection(pdir);
365
366 // in elastic scattering time and weight are not changed
367
368 G4Track* t = new G4Track(p, track.GetGlobalTime(),
369 track.GetPosition());
370 t->SetWeight(weight);
371 t->SetTouchableHandle(track.GetTouchableHandle());
373 }
374 else
375 {
376 edep += p->GetKineticEnergy();
377 delete p;
378 }
379 }
382 result->Clear();
383 }
384 return theTotalResult;
385}
@ JustWarning
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
std::ostringstream G4ExceptionDescription
G4TrackStatus
@ fKillTrackAndSecondaries
@ fSuspend
@ fAlive
@ fStopAndKill
@ fStopButAlive
@ fPostponeToNextEvent
int G4int
Definition G4Types.hh:85
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition Randomize.hh:52
Hep3Vector & rotateUz(const Hep3Vector &)
Hep3Vector & rotate(double, const Hep3Vector &)
G4AffineTransform & Invert()
G4ThreeVector TransformPoint(const G4ThreeVector &vec) const
G4ThreeVector TransformAxis(const G4ThreeVector &axis) const
const G4Element * SampleZandA(const G4DynamicParticle *, const G4Material *, G4Nucleus &target)
void SetMomentumDirection(const G4ThreeVector &aDirection)
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4int GetZasInt() const
Definition G4Element.hh:120
G4double GetEnergyChange() const
void SetTrafoToLab(const G4LorentzRotation &aT)
G4double GetLocalEnergyDeposit() const
const G4ThreeVector & GetMomentumChange() const
std::size_t GetNumberOfSecondaries() const
G4HadSecondary * GetSecondary(size_t i)
void Initialise(const G4Track &aT)
G4LorentzRotation & GetTrafoToLab()
G4DynamicParticle * GetParticle()
void Report(std::ostream &aS) const
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
const G4String & GetModelName() const
void SetRecoilEnergyThreshold(G4double val)
void FillResult(G4HadFinalState *aR, const G4Track &aT)
G4HadProjectile thePro
G4Nucleus * GetTargetNucleusPointer()
G4ParticleChange * theTotalResult
std::vector< G4HadronicInteraction * > & GetHadronicInteractionList()
void DumpState(const G4Track &, const G4String &, G4ExceptionDescription &)
const G4String & GetName() const
static G4Material * GetMaterial(const G4String &name, G4bool warning=true)
virtual G4double GetElementCrossSection(const G4DynamicParticle *dynPart, G4int Z, const G4Material *mat)
G4int GetA_asInt() const
Definition G4Nucleus.hh:99
G4int GetZ_asInt() const
Definition G4Nucleus.hh:105
void AddSecondary(G4Track *aSecondary)
void ProposePosition(G4double x, G4double y, G4double z)
void Initialize(const G4Track &) override
void ProposeEnergy(G4double finalEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
G4ProcessManager * GetProcessManager() const
const G4String & GetParticleName() const
G4ProcessVector * GetAtRestProcessVector(G4ProcessVectorTypeIndex typ=typeGPIL) const
std::size_t size() const
const std::vector< G4double > * GetEnergyCutsVector(std::size_t pcIdx) const
static G4ProductionCutsTable * GetProductionCutsTable()
void ReLocateWithinVolume(const G4ThreeVector &pGlobalPoint)
const G4VTouchable * GetTouchable() const
const G4ThreeVector & GetPosition() const
virtual const G4RotationMatrix * GetRotation(G4int depth=0) const
virtual const G4ThreeVector & GetTranslation(G4int depth=0) const
void SetWeight(G4double aValue)
void SetTouchableHandle(const G4TouchableHandle &apValue)
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &)
void ProposeTrackStatus(G4TrackStatus status)
void ProposeNonIonizingEnergyDeposit(G4double anEnergyPart)
void ProposeWeight(G4double finalWeight)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
void SetNumberOfSecondaries(G4int totSecondaries)
void ClearNumberOfInteractionLengthLeft()
G4int verboseLevel

◆ PostStepGetPhysicalInteractionLength()

G4double G4MuNeutrinoNucleusProcess::PostStepGetPhysicalInteractionLength ( const G4Track & track,
G4double previousStepSize,
G4ForceCondition * condition )
overridevirtual

Reimplemented from G4HadronicProcess.

Definition at line 93 of file G4MuNeutrinoNucleusProcess.cc.

96{
98 previousStepSize, condition );
99}
G4double condition(const G4ErrorSymMatrix &m)
virtual G4double PostStepGetPhysicalInteractionLength(const G4Track &track, G4double previousStepSize, G4ForceCondition *condition)

◆ ProcessDescription()

void G4MuNeutrinoNucleusProcess::ProcessDescription ( std::ostream & outFile) const
overridevirtual

Reimplemented from G4HadronicProcess.

Definition at line 123 of file G4MuNeutrinoNucleusProcess.cc.

124{
125 outFile << "G4MuNeutrinoNucleusProcess handles the scattering of \n"
126 << "neutrino on electrons by invoking the following model(s) and \n"
127 << "cross section(s).\n";
128}

◆ SetBiasingFactor()

void G4MuNeutrinoNucleusProcess::SetBiasingFactor ( G4double bf)

Definition at line 77 of file G4MuNeutrinoNucleusProcess.cc.

78{
79 fNuNuclTotXscBias = bf;
80}

◆ SetBiasingFactors()

void G4MuNeutrinoNucleusProcess::SetBiasingFactors ( G4double bfCc,
G4double bfNc )

Definition at line 84 of file G4MuNeutrinoNucleusProcess.cc.

85{
86 fNuNuclCcBias = bfCc;
87 fNuNuclNcBias = bfNc;
88 fNuNuclTotXscBias = std::max(fNuNuclCcBias, fNuNuclNcBias);
89}

◆ SetLowestEnergy()

void G4MuNeutrinoNucleusProcess::SetLowestEnergy ( G4double val)

Definition at line 388 of file G4MuNeutrinoNucleusProcess.cc.

389{
390 lowestEnergy = val;
391}

The documentation for this class was generated from the following files: