Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LightIonQMDReaction.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// 080505 Fixed and changed sampling method of impact parameter by T. Koi
27// 080602 Fix memory leaks by T. Koi
28// 080612 Delete unnecessary dependency and unused functions
29// Change criterion of reaction by T. Koi
30// 081107 Add UnUseGEM (then use the default channel of G4Evaporation)
31// UseFrag (chage criterion of a inelastic reaction)
32// Fix bug in nucleon projectiles by T. Koi
33// 090122 Be8 -> Alpha + Alpha
34// 090331 Change member shenXS and genspaXS object to pointer
35// 091119 Fix for incidence of neutral particles
36//
37// 230306 Fix in the judgement of elasticLike_system for nucleon-nucleon, pion-nucleon collistion
38// in line 450 by Y-H. Sato and A. Haga.
39// 230306 Fix for nucleon deplication
40// added system->Clear() in line 522 by Y-H. Sato and A. Haga.
41// 230306 Allowing to simlate nucleon-nucleon, pion-nucleon scattering
42// pion is accepted in the Ratherford parameter setting by Y-H. Sato and A. Haga.
43//
47#include "G4Pow.hh"
49#include "G4SystemOfUnits.hh"
50#include "G4NistManager.hh"
51
53#include "G4BGGPionElasticXS.hh"
59
60// Fpr inelastic cross section check
61#include "G4NuclearRadii.hh"
62#include "G4HadronNucleonXsc.hh"
63// test.csv (writting reaction data (particle, position, momentum))
64#include <iostream>
65#include <fstream>
66using std::endl; // ***
67using std::ofstream; // ***
68// -- test.csv
69
71: G4HadronicInteraction("LightIonQMDModel")
72, system ( NULL )
73, deltaT ( 1 ) // in fsec (c=1)
74, maxTime ( 100 ) // will have maxTime-th time step
75, envelopF ( 1.05 ) // 10% for Peripheral reactions
76, gem ( true )
77, frag ( false )
78, secID( -1 )
79{
80 G4cout << "G4LightIonQMDReaction::G4LightIonQMDReaction" << G4endl;
81 G4cout << "Recommended Energy of LightIonQMD: 30MeV/u - 500MeV/u" << G4endl;
82
84 pipElNucXS = new G4BGGPionElasticXS(G4PionPlus::PionPlus() );
85 pipElNucXS->BuildPhysicsTable(*(G4PionPlus::PionPlus() ) );
86
87 pimElNucXS = new G4BGGPionElasticXS(G4PionMinus::PionMinus() );
88 pimElNucXS->BuildPhysicsTable(*(G4PionMinus::PionMinus() ) );
89
90 pipInelNucXS = new G4BGGPionInelasticXS(G4PionPlus::PionPlus() );
91 pipInelNucXS->BuildPhysicsTable(*(G4PionPlus::PionPlus() ) );
92
93 pimInelNucXS = new G4BGGPionInelasticXS(G4PionMinus::PionMinus() );
94 pimInelNucXS->BuildPhysicsTable(*(G4PionMinus::PionMinus() ) );
95
96 meanField = new G4LightIonQMDMeanField();
97 collision = new G4LightIonQMDCollision();
98
99 excitationHandler = new G4ExcitationHandler();
100 setEvaporationCh();
101
102 coulomb_collision_gamma_proj = 0.0;
103 coulomb_collision_rx_proj = 0.0;
104 coulomb_collision_rz_proj = 0.0;
105 coulomb_collision_px_proj = 0.0;
106 coulomb_collision_pz_proj = 0.0;
107
108 coulomb_collision_gamma_targ = 0.0;
109 coulomb_collision_rx_targ = 0.0;
110 coulomb_collision_rz_targ = 0.0;
111 coulomb_collision_px_targ = 0.0;
112 coulomb_collision_pz_targ = 0.0;
113
114 secID = G4PhysicsModelCatalog::GetModelID( "model_LightIonQMDModel" );
115}
116
117
119{
120 delete excitationHandler;
121 delete collision;
122 delete meanField;
123}
124
125
127{
128 //G4cout << "G4LightIonQMDReaction::ApplyYourself" << G4endl;
129
131
132 system = new G4QMDSystem;
133
134 G4int proj_Z = 0;
135 G4int proj_A = 0;
136 const G4ParticleDefinition* proj_pd = ( const G4ParticleDefinition* ) projectile.GetDefinition();
137 if ( proj_pd->GetParticleType() == "nucleus" )
138 {
139 proj_Z = proj_pd->GetAtomicNumber();
140 proj_A = proj_pd->GetAtomicMass();
141 }
142 else
143 {
144 proj_Z = (int)( proj_pd->GetPDGCharge()/eplus );
145 proj_A = 1;
146 }
147 //G4int targ_Z = int ( target.GetZ() + 0.5 );
148 //G4int targ_A = int ( target.GetN() + 0.5 );
149 //migrate to integer A and Z (GetN_asInt returns number of neutrons in the nucleus since this)
150 G4int targ_Z = target.GetZ_asInt();
151 G4int targ_A = target.GetA_asInt();
152 const G4ParticleDefinition* targ_pd = G4IonTable::GetIonTable()->GetIon( targ_Z , targ_A , 0.0 );
153
154
155 //G4NistManager* nistMan = G4NistManager::Instance();
156// G4Element* G4NistManager::FindOrBuildElement( targ_Z );
157
158 const G4DynamicParticle* proj_dp = new G4DynamicParticle ( proj_pd , projectile.Get4Momentum() );
159 //const G4Element* targ_ele = nistMan->FindOrBuildElement( targ_Z );
160 //G4double aTemp = projectile.GetMaterial()->GetTemperature();
161
162 // Glauber-Gribov nucleus-nucleus cross section does not have GetIsoCrossSection,
163 // therefore call GetElementCrossSection instead.
164 //G4double xs_0 = theXS->GetIsoCrossSection ( proj_dp , targ_Z , targ_A );
165 G4double xs_0 = theXS->GetElementCrossSection( proj_dp , targ_Z , projectile.GetMaterial() );
166
167 // When the projectile is a pion
168 if (proj_pd == G4PionPlus::PionPlus() ) {
169 xs_0 = pipElNucXS->GetElementCrossSection(proj_dp, targ_Z, projectile.GetMaterial() ) +
170 pipInelNucXS->GetElementCrossSection(proj_dp, targ_Z, projectile.GetMaterial() );
171 } else if (proj_pd == G4PionMinus::PionMinus() ) {
172 xs_0 = pimElNucXS->GetElementCrossSection(proj_dp, targ_Z, projectile.GetMaterial() ) +
173 pimInelNucXS->GetElementCrossSection(proj_dp, targ_Z, projectile.GetMaterial() );
174 }
175
176 //G4double xs_0 = genspaXS->GetCrossSection ( proj_dp , targ_ele , aTemp );
177 //G4double xs_0 = theXS->GetCrossSection ( proj_dp , targ_ele , aTemp );
178 //110822
179
180 G4double bmax_0 = std::sqrt( xs_0 / pi );
181 //std::cout << "bmax_0 in fm (fermi) " << bmax_0/fermi << std::endl;
182
183 //delete proj_dp;
184
185 G4bool elastic = true;
186
187 std::vector< G4LightIonQMDNucleus* > nucleuses; // Secondary nuceluses
188 G4ThreeVector boostToReac; // ReactionSystem (CM or NN);
189 G4ThreeVector boostBackToLAB; // Reaction System to LAB;
190
191 G4LorentzVector targ4p( G4ThreeVector( 0.0 ) , targ_pd->GetPDGMass()/GeV );
192 G4ThreeVector boostLABtoCM = targ4p.findBoostToCM( proj_dp->Get4Momentum()/GeV ); // CM of target and proj;
193
194 G4double p1 = proj_dp->GetMomentum().mag()/GeV/proj_A;
195 G4double m1 = proj_dp->GetDefinition()->GetPDGMass()/GeV/proj_A;
196 G4double e1 = std::sqrt( p1*p1 + m1*m1 );
197 G4double e2 = targ_pd->GetPDGMass()/GeV/targ_A;
198 G4double beta_nn = -p1 / ( e1+e2 );
199
200 G4ThreeVector boostLABtoNN ( 0. , 0. , beta_nn ); // CM of NN;
201
202 G4double beta_nncm = ( - boostLABtoCM.beta() + boostLABtoNN.beta() ) / ( 1 - boostLABtoCM.beta() * boostLABtoNN.beta() ) ;
203
204 //std::cout << targ4p << std::endl;
205 //std::cout << proj_dp->Get4Momentum()<< std::endl;
206 //std::cout << beta_nncm << std::endl;
207 G4ThreeVector boostNNtoCM( 0. , 0. , beta_nncm ); //
208 G4ThreeVector boostCMtoNN( 0. , 0. , -beta_nncm ); //
209
210 boostToReac = boostLABtoNN;
211 boostBackToLAB = -boostLABtoNN;
212
213 delete proj_dp;
214 G4int icounter = 0;
215 G4int icounter_max = 1024;
216 while ( elastic ) // Loop checking, 11.03.2015, T. Koi
217 {
218 icounter++;
219 if ( icounter > icounter_max ) {
220 G4cout << "Loop-counter exceeded the threshold value at " << __LINE__ << "th line of " << __FILE__ << "." << G4endl;
221 break;
222 }
223
224// impact parameter
225 //G4double bmax = 1.05*(bmax_0/fermi); // 10% for Peripheral reactions
226 G4double bmax = envelopF*(bmax_0/fermi);
227 G4double b = bmax * std::sqrt ( G4UniformRand() );
228//071112
229 //G4double b = 0;
230 //G4double b = bmax;
231 //G4double b = bmax/1.05 * 0.7 * G4UniformRand();
232
233 //G4cout << "G4QMDRESULT bmax_0 = " << bmax_0/fermi << " fm, bmax = " << bmax << " fm , b = " << b << " fm " << G4endl;
234
235 G4double plab = projectile.GetTotalMomentum()/GeV;
236 G4double elab = ( projectile.GetKineticEnergy() + proj_pd->GetPDGMass() + targ_pd->GetPDGMass() )/GeV;
237
238 calcOffSetOfCollision( b , proj_pd , targ_pd , plab , elab , bmax , boostCMtoNN );
239
240// Projectile
241 G4LorentzVector proj4pLAB = projectile.Get4Momentum()/GeV;
242
244 if ( projectile.GetDefinition()->GetParticleType() == "nucleus"
245 || projectile.GetDefinition()->GetParticleName() == "proton"
246 || projectile.GetDefinition()->GetParticleName() == "neutron" )
247 {
248
249 proj_Z = proj_pd->GetAtomicNumber();
250 proj_A = proj_pd->GetAtomicMass();
251 proj = new G4LightIonQMDGroundStateNucleus( proj_Z , proj_A );
252 //proj->ShowParticipants();
253
254
255 meanField->SetSystem ( proj );
256 if ( proj_A != 1 )
257 {
258 proj->SetTotalPotential( meanField->GetTotalPotential() );
260 }
261 }
262
263// Target
264 //G4int iz = int ( target.GetZ() );
265 //G4int ia = int ( target.GetN() );
266 //migrate to integer A and Z (GetN_asInt returns number of neutrons in the nucleus since this)
267 G4int iz = int ( target.GetZ_asInt() );
268 G4int ia = int ( target.GetA_asInt() );
270
271 meanField->SetSystem (targ );
272 if ( ia != 1 )
273 {
274 targ->SetTotalPotential( meanField->GetTotalPotential() );
276 }
277
278 //G4LorentzVector targ4p( G4ThreeVector( 0.0 ) , targ->GetNuclearMass()/GeV );
279// Boost Vector to CM
280 //boostToCM = targ4p.findBoostToCM( proj4pLAB );
281
282// Target
283 for ( G4int i = 0 ; i < targ->GetTotalNumberOfParticipant() ; i++ )
284 {
285
286 G4ThreeVector p0 = targ->GetParticipant( i )->GetMomentum();
287 G4ThreeVector r0 = targ->GetParticipant( i )->GetPosition();
288
289 G4ThreeVector p ( p0.x() + coulomb_collision_px_targ
290 , p0.y()
291 , p0.z() * coulomb_collision_gamma_targ + coulomb_collision_pz_targ );
292
293 G4ThreeVector r ( r0.x() + coulomb_collision_rx_targ
294 , r0.y()
295 , r0.z() / coulomb_collision_gamma_targ + coulomb_collision_rz_targ );
296
297 system->SetParticipant( new G4QMDParticipant( targ->GetParticipant( i )->GetDefinition() , p , r ) );
298 system->GetParticipant( i )->SetTarget();
299
300 }
301
302 G4LorentzVector proj4pCM = CLHEP::boostOf ( proj4pLAB , boostToReac );
303 G4LorentzVector targ4pCM = CLHEP::boostOf ( targ4p , boostToReac );
304
305// Projectile
306 //G4cout << "proj : " << proj << G4endl;
307 //if ( proj != NULL )
308 if ( proj_A != 1 )
309 {
310
311// projectile is nucleus
312
313 for ( G4int i = 0 ; i < proj->GetTotalNumberOfParticipant() ; i++ )
314 {
315
316 G4ThreeVector p0 = proj->GetParticipant( i )->GetMomentum();
317 G4ThreeVector r0 = proj->GetParticipant( i )->GetPosition();
318
319 G4ThreeVector p ( p0.x() + coulomb_collision_px_proj
320 , p0.y()
321 , p0.z() * coulomb_collision_gamma_proj + coulomb_collision_pz_proj );
322
323 G4ThreeVector r ( r0.x() + coulomb_collision_rx_proj
324 , r0.y()
325 , r0.z() / coulomb_collision_gamma_proj + coulomb_collision_rz_proj );
326
327 system->SetParticipant( new G4QMDParticipant( proj->GetParticipant( i )->GetDefinition() , p , r ) );
329 }
330
331 }
332 else
333 {
334
335// projectile is particle
336
337 // avoid multiple set in "elastic" loop
338 //G4cout << "system Total Participants : " << system->GetTotalNumberOfParticipant() << ", target : " << targ->GetTotalNumberOfParticipant() << G4endl;
340 {
341
343
344 G4ThreeVector p0( 0 );
345 G4ThreeVector r0( 0 );
346
347 G4ThreeVector p ( p0.x() + coulomb_collision_px_proj
348 , p0.y()
349 , p0.z() * coulomb_collision_gamma_proj + coulomb_collision_pz_proj );
350
351 G4ThreeVector r ( r0.x() + coulomb_collision_rx_proj
352 , r0.y()
353 , r0.z() / coulomb_collision_gamma_proj + coulomb_collision_rz_proj );
354
355 system->SetParticipant( new G4QMDParticipant( (G4ParticleDefinition*)projectile.GetDefinition() , p , r ) );
356 // This is not important becase only 1 projectile particle.
357 system->GetParticipant ( i )->SetProjectile();
358 }
359
360 }
361 //system->ShowParticipants();
362
363 delete targ;
364 delete proj;
365
366 meanField->SetSystem ( system );
367 collision->SetMeanField ( meanField );
368
369// Time Evolution
370 //std::cout << "Start time evolution " << std::endl;
371 //system->ShowParticipants();
372 for ( G4int i = 0 ; i < maxTime ; i++ )
373 {
374 //G4cout << " do Paropagate " << i << " th time step. " << G4endl;
375 meanField->DoPropagation( deltaT );
376 //system->ShowParticipants();
377 collision->CalKinematicsOfBinaryCollisions( deltaT );
378
379 //if ( i / 10 * 10 == i )
380 //{
381 //G4cout << i << " th time step. " << G4endl;
382 //system->ShowParticipants();
383 //}
384 //system->ShowParticipants();
385 }
386 //system->ShowParticipants();
387
388
389 //std::cout << "Doing Cluster Judgment " << std::endl;
390
391 nucleuses = meanField->DoClusterJudgment();
392
393// Elastic Judgment
394
395 G4int numberOfSecondary = int ( nucleuses.size() ) + system->GetTotalNumberOfParticipant();
396
397 G4int sec_a_Z = 0;
398 G4int sec_a_A = 0;
399 const G4ParticleDefinition* sec_a_pd = NULL;
400 G4int sec_b_Z = 0;
401 G4int sec_b_A = 0;
402 const G4ParticleDefinition* sec_b_pd = NULL;
403
404 if ( numberOfSecondary == 2 )
405 {
406
407 G4bool elasticLike_system = false;
408 if ( nucleuses.size() == 2 )
409 {
410
411 sec_a_Z = nucleuses[0]->GetAtomicNumber();
412 sec_a_A = nucleuses[0]->GetMassNumber();
413 sec_b_Z = nucleuses[1]->GetAtomicNumber();
414 sec_b_A = nucleuses[1]->GetMassNumber();
415
416 if ( ( sec_a_Z == proj_Z && sec_a_A == proj_A && sec_b_Z == targ_Z && sec_b_A == targ_A )
417 || ( sec_a_Z == targ_Z && sec_a_A == targ_A && sec_b_Z == proj_Z && sec_b_A == proj_A ) )
418 {
419 elasticLike_system = true;
420 }
421
422 }
423 else if ( nucleuses.size() == 1 )
424 {
425
426 sec_a_Z = nucleuses[0]->GetAtomicNumber();
427 sec_a_A = nucleuses[0]->GetMassNumber();
428 sec_b_pd = system->GetParticipant( 0 )->GetDefinition();
429
430 if ( ( sec_a_Z == proj_Z && sec_a_A == proj_A && sec_b_pd == targ_pd )
431 || ( sec_a_Z == targ_Z && sec_a_A == targ_A && sec_b_pd == proj_pd ) )
432 {
433 elasticLike_system = true;
434 }
435
436 }
437 else
438 {
439
440 sec_a_pd = system->GetParticipant( 0 )->GetDefinition();
441 sec_b_pd = system->GetParticipant( 1 )->GetDefinition();
442
443 if ( ( sec_a_pd == proj_pd && sec_b_pd == targ_pd )
444 || ( sec_a_pd == targ_pd && sec_b_pd == proj_pd ) )
445 {
446 elasticLike_system = true;
447 }
448 // QMD should be inelastic collision, so that nucleon-nucleon collision should also be inelastic in this phase. by Y-H. S and A. H, Mar. 6, 2023.
449 if ( (proj_pd->GetParticleName() == "proton" && targ_pd->GetParticleName() == "proton")
450 || (proj_pd->GetParticleName() == "neutron" && targ_pd->GetParticleName() == "proton")
451 || (proj_pd->GetParticleName() == "pi+" && targ_pd->GetParticleName() == "proton")
452 || (proj_pd->GetParticleName() == "pi-" && targ_pd->GetParticleName() == "proton"))
453 {
454 elasticLike_system = false;
455 //G4cout << "elasticLike_system = false proton NOCollision " << system->GetNOCollision() << G4endl;
456 if ( system->GetNOCollision() == 1 || icounter+900 > icounter_max) elastic = false;
457 }
458 // Addition -- end
459 }
460
461 if ( elasticLike_system == true )
462 {
463
464 G4bool elasticLike_energy = true;
465// Cal ExcitationEnergy
466 for ( G4int i = 0 ; i < int ( nucleuses.size() ) ; i++ )
467 {
468
469 //meanField->SetSystem( nucleuses[i] );
470 meanField->SetNucleus( nucleuses[i] );
471 //nucleuses[i]->SetTotalPotential( meanField->GetTotalPotential() );
472 //nucleuses[i]->CalEnergyAndAngularMomentumInCM();
473
474 if ( nucleuses[i]->GetExcitationEnergy()*GeV > 1.0*MeV ) elasticLike_energy = false;
475
476 }
477
478// Check Collision
479 G4bool withCollision = true;
480 if ( system->GetNOCollision() == 0 ) withCollision = false;
481
482// Final judegement for Inelasitc or Elastic;
483//
484// ElasticLike without Collision
485 //if ( elasticLike_energy == true && withCollision == false ) elastic = true; // ielst = 0
486// ElasticLike with Collision
487 //if ( elasticLike_energy == true && withCollision == true ) elastic = true; // ielst = 1
488// InelasticLike without Collision
489 //if ( elasticLike_energy == false ) elastic = false; // ielst = 2
490 if ( frag == true )
491 if ( elasticLike_energy == false ) elastic = false;
492// InelasticLike with Collision
493 if ( elasticLike_energy == false && withCollision == true ) elastic = false; // ielst = 3
494
495 }
496
497 }
498 else
499 {
500
501// numberOfSecondary != 2
502 elastic = false;
503
504 }
505
506//071115
507 //G4cout << elastic << G4endl;
508 // if elastic is true try again from sampling of impact parameter
509
510 if ( elastic == true )
511 {
512 // delete this nucleues
513 for ( std::vector< G4LightIonQMDNucleus* >::iterator
514 it = nucleuses.begin() ; it != nucleuses.end() ; it++ )
515 {
516 delete *it;
517 }
518 nucleuses.clear();
519 // system->Clear() should be included here. Otherwise, the nucleon is repeatedly regstered if the nucleon is the projectile. by Y-H. S. and A. H, Mar. 6, 2023.
520 system->Clear();
521 }
522
523 }
524
525
526// Statical Decay Phase
527
528 for ( std::vector< G4LightIonQMDNucleus* >::iterator it
529 = nucleuses.begin() ; it != nucleuses.end() ; it++ )
530 {
531
532/*
533 G4cout << "G4QMDRESULT "
534 << (*it)->GetAtomicNumber()
535 << " "
536 << (*it)->GetMassNumber()
537 << " "
538 << (*it)->Get4Momentum()
539 << " "
540 << (*it)->Get4Momentum().vect()
541 << " "
542 << (*it)->Get4Momentum().restMass()
543 << " "
544 << (*it)->GetNuclearMass()/GeV
545 << G4endl;
546*/
547
548 meanField->SetNucleus ( *it );
549
550 if ( (*it)->GetAtomicNumber() == 0 // neutron cluster
551 || (*it)->GetAtomicNumber() == (*it)->GetMassNumber() ) // proton cluster
552 {
553 // push back system
554 for ( G4int i = 0 ; i < (*it)->GetTotalNumberOfParticipant() ; i++ )
555 {
556 G4QMDParticipant* aP = new G4QMDParticipant( ( (*it)->GetParticipant( i ) )->GetDefinition() , ( (*it)->GetParticipant( i ) )->GetMomentum() , ( (*it)->GetParticipant( i ) )->GetPosition() );
557 system->SetParticipant ( aP );
558 }
559 continue;
560 }
561
562 G4double nucleus_e = std::sqrt ( G4Pow::GetInstance()->powN ( (*it)->GetNuclearMass()/GeV , 2 ) + G4Pow::GetInstance()->powN ( (*it)->Get4Momentum().vect().mag() , 2 ) );
563 G4LorentzVector nucleus_p4CM ( (*it)->Get4Momentum().vect() , nucleus_e );
564
565// std::cout << "G4QMDRESULT nucleus deltaQ " << deltaQ << std::endl;
566
567 G4int ia = (*it)->GetMassNumber();
568 G4int iz = (*it)->GetAtomicNumber();
569
570 G4LorentzVector lv ( G4ThreeVector( 0.0 ) , (*it)->GetExcitationEnergy()*GeV + G4IonTable::GetIonTable()->GetIonMass( iz , ia ) );
571
572 G4Fragment* aFragment = new G4Fragment( ia , iz , lv );
573
575 rv = excitationHandler->BreakItUp( *aFragment );
576 G4bool notBreak = true;
577 for ( G4ReactionProductVector::iterator itt
578 = rv->begin() ; itt != rv->end() ; itt++ )
579 {
580
581 notBreak = false;
582 // Secondary from this nucleus (*it)
583 const G4ParticleDefinition* pd = (*itt)->GetDefinition();
584
585 G4LorentzVector p4 ( (*itt)->GetMomentum()/GeV , (*itt)->GetTotalEnergy()/GeV ); //in nucleus(*it) rest system
586 G4LorentzVector p4_CM = CLHEP::boostOf( p4 , -nucleus_p4CM.findBoostToCM() ); // Back to CM
587 G4LorentzVector p4_LAB = CLHEP::boostOf( p4_CM , boostBackToLAB ); // Back to LAB
588
589
590//090122
591 //theParticleChange.AddSecondary( dp );
592 if ( !( pd->GetAtomicNumber() == 4 && pd->GetAtomicMass() == 8 ) )
593 {
594 //G4cout << "pd out of notBreak loop : " << pd->GetParticleName() << G4endl;
595 G4DynamicParticle* dp = new G4DynamicParticle( pd , p4_LAB*GeV );
597 }
598 else
599 {
600 //Be8 -> Alpha + Alpha + Q
601 G4ThreeVector randomized_direction( G4UniformRand() , G4UniformRand() , G4UniformRand() );
602 randomized_direction = randomized_direction.unit();
603 G4double q_decay = (*itt)->GetMass() - 2*G4Alpha::Alpha()->GetPDGMass();
604 G4double p_decay = std::sqrt ( G4Pow::GetInstance()->powN(G4Alpha::Alpha()->GetPDGMass()+q_decay/2,2) - G4Pow::GetInstance()->powN(G4Alpha::Alpha()->GetPDGMass() , 2 ) );
605 G4LorentzVector p4_a1 ( p_decay*randomized_direction , G4Alpha::Alpha()->GetPDGMass()+q_decay/2 ); //in Be8 rest system
606
607 G4LorentzVector p4_a1_Be8 = CLHEP::boostOf ( p4_a1/GeV , -p4.findBoostToCM() );
608 G4LorentzVector p4_a1_CM = CLHEP::boostOf ( p4_a1_Be8 , -nucleus_p4CM.findBoostToCM() );
609 G4LorentzVector p4_a1_LAB = CLHEP::boostOf ( p4_a1_CM , boostBackToLAB );
610
611 G4LorentzVector p4_a2 ( -p_decay*randomized_direction , G4Alpha::Alpha()->GetPDGMass()+q_decay/2 ); //in Be8 rest system
612
613 G4LorentzVector p4_a2_Be8 = CLHEP::boostOf ( p4_a2/GeV , -p4.findBoostToCM() );
614 G4LorentzVector p4_a2_CM = CLHEP::boostOf ( p4_a2_Be8 , -nucleus_p4CM.findBoostToCM() );
615 G4LorentzVector p4_a2_LAB = CLHEP::boostOf ( p4_a2_CM , boostBackToLAB );
616
617 G4DynamicParticle* dp1 = new G4DynamicParticle( G4Alpha::Alpha() , p4_a1_LAB*GeV );
618 G4DynamicParticle* dp2 = new G4DynamicParticle( G4Alpha::Alpha() , p4_a2_LAB*GeV );
621 }
622//090122
623
624/*
625 G4cout
626 << "Regist Secondary "
627 << (*itt)->GetDefinition()->GetParticleName()
628 << " "
629 << (*itt)->GetMomentum()/GeV
630 << " "
631 << (*itt)->GetKineticEnergy()/GeV
632 << " "
633 << (*itt)->GetMass()/GeV
634 << " "
635 << (*itt)->GetTotalEnergy()/GeV
636 << " "
637 << (*itt)->GetTotalEnergy()/GeV * (*itt)->GetTotalEnergy()/GeV
638 - (*itt)->GetMomentum()/GeV * (*itt)->GetMomentum()/GeV
639 << " "
640 << nucleus_p4CM.findBoostToCM()
641 << " "
642 << p4
643 << " "
644 << p4_CM
645 << " "
646 << p4_LAB
647 << G4endl;
648*/
649
650 }
651 if ( notBreak == true )
652 {
653
654 const G4ParticleDefinition* pd = G4IonTable::GetIonTable()->GetIon( (*it)->GetAtomicNumber() , (*it)->GetMassNumber(), (*it)->GetExcitationEnergy()*GeV );
655 //G4cout << "pd in notBreak loop : " << pd->GetParticleName() << G4endl;
656 G4LorentzVector p4_CM = nucleus_p4CM;
657 G4LorentzVector p4_LAB = CLHEP::boostOf( p4_CM , boostBackToLAB ); // Back to LAB
658 G4DynamicParticle* dp = new G4DynamicParticle( pd , p4_LAB*GeV );
660
661 }
662
663 for ( G4ReactionProductVector::iterator itt
664 = rv->begin() ; itt != rv->end() ; itt++ )
665 {
666 delete *itt;
667 }
668 delete rv;
669
670 delete aFragment;
671
672 }
673
674
675
676 for ( G4int i = 0 ; i < system->GetTotalNumberOfParticipant() ; i++ )
677 {
678 // Secondary particles
679
680 const G4ParticleDefinition* pd = system->GetParticipant( i )->GetDefinition();
681 G4LorentzVector p4_CM = system->GetParticipant( i )->Get4Momentum();
682 G4LorentzVector p4_LAB = CLHEP::boostOf( p4_CM , boostBackToLAB );
683 G4DynamicParticle* dp = new G4DynamicParticle( pd , p4_LAB*GeV );
685 //G4cout << "In the last theParticleChange loop : " << pd->GetParticleName() << G4endl;
686
687/*
688 G4cout << "G4QMDRESULT "
689 << "r" << i << " " << system->GetParticipant ( i ) -> GetPosition() << " "
690 << "p" << i << " " << system->GetParticipant ( i ) -> Get4Momentum()
691 << G4endl;
692*/
693
694 }
695
696 for ( std::vector< G4LightIonQMDNucleus* >::iterator it
697 = nucleuses.begin() ; it != nucleuses.end() ; it++ )
698 {
699 delete *it; // delete nulceuse
700 }
701 nucleuses.clear();
702
703 system->Clear();
704 delete system;
705
707
708 for (G4int i = 0; i < G4int(theParticleChange.GetNumberOfSecondaries() ); i++)
709 {
710 //G4cout << "Particle : " << theParticleChange.GetSecondary(i)->GetParticle()->GetParticleDefinition()->GetParticleName() << G4endl;
711 //G4cout << "KEnergy : " << theParticleChange.GetSecondary(i)->GetParticle()->GetKineticEnergy() << G4endl;
712 //G4cout << "modelID : " << theParticleChange.GetSecondary(i)->GetCreatorModelID() << G4endl;
714 }
715
716 return &theParticleChange;
717
718}
719
720
721
722void G4LightIonQMDReaction::calcOffSetOfCollision( G4double b ,
723const G4ParticleDefinition* pd_proj ,
724const G4ParticleDefinition* pd_targ ,
725G4double ptot , G4double etot , G4double bmax , G4ThreeVector boostToCM )
726{
727
728 G4double mass_proj = pd_proj->GetPDGMass()/GeV;
729 G4double mass_targ = pd_targ->GetPDGMass()/GeV;
730
731 G4double stot = std::sqrt ( etot*etot - ptot*ptot );
732
733 G4double pstt = std::sqrt ( ( stot*stot - ( mass_proj + mass_targ ) * ( mass_proj + mass_targ )
734 ) * ( stot*stot - ( mass_proj - mass_targ ) * ( mass_proj - mass_targ ) ) )
735 / ( 2.0 * stot );
736
737 G4double pzcc = pstt;
738 G4double eccm = stot - ( mass_proj + mass_targ );
739
740 G4int zp = 1;
741 G4int ap = 1;
742 if ( pd_proj->GetParticleType() == "nucleus" )
743 {
744 zp = pd_proj->GetAtomicNumber();
745 ap = pd_proj->GetAtomicMass();
746 }
747 else
748 {
749 // proton, neutron, mesons
750 zp = int ( pd_proj->GetPDGCharge()/eplus + 0.5 );
751 // ap = 1;
752 }
753
754
755 G4int zt = pd_targ->GetAtomicNumber();
756 G4int at = pd_targ->GetAtomicMass();
757
758
759 // Check the ramx0 value
760 //G4double rmax0 = 8.0; // T.K dicide parameter value // for low energy
761 G4double rmax0 = bmax + 4.0;
762 G4double rmax = std::sqrt( rmax0*rmax0 + b*b );
763
764 G4double ccoul = 0.001439767;
765 G4double pcca = 1.0 - double ( zp * zt ) * ccoul / eccm / rmax - ( b / rmax )*( b / rmax );
766
767 G4double pccf = std::sqrt( pcca );
768
769 //Fix for neutral particles
770 G4double aas1 = 0.0;
771 G4double bbs = 0.0;
772
773 if ( zp != 0 )
774 {
775 G4double aas = 2.0 * eccm * b / double ( zp * zt ) / ccoul;
776 bbs = 1.0 / std::sqrt ( 1.0 + aas*aas );
777 aas1 = ( 1.0 + aas * b / rmax ) * bbs;
778 }
779
780 G4double cost = 0.0;
781 G4double sint = 0.0;
782 G4double thet1 = 0.0;
783 G4double thet2 = 0.0;
784 if ( 1.0 - aas1*aas1 <= 0 || 1.0 - bbs*bbs <= 0.0 )
785 {
786 cost = 1.0;
787 sint = 0.0;
788 }
789 else
790 {
791 G4double aat1 = aas1 / std::sqrt ( 1.0 - aas1*aas1 );
792 G4double aat2 = bbs / std::sqrt ( 1.0 - bbs*bbs );
793
794 thet1 = std::atan ( aat1 );
795 thet2 = std::atan ( aat2 );
796
797// TK enter to else block
798 G4double theta = thet1 - thet2;
799 cost = std::cos( theta );
800 sint = std::sin( theta );
801 }
802
803 G4double rzpr = -rmax * cost * ( mass_targ ) / ( mass_proj + mass_targ );
804 G4double rzta = rmax * cost * ( mass_proj ) / ( mass_proj + mass_targ );
805
806 G4double rxpr = rmax / 2.0 * sint;
807
808 G4double rxta = -rxpr;
809
810
811 G4double pzpc = pzcc * ( cost * pccf + sint * b / rmax );
812 G4double pxpr = pzcc * ( -sint * pccf + cost * b / rmax );
813
814 G4double pztc = - pzpc;
815 G4double pxta = - pxpr;
816
817 G4double epc = std::sqrt ( pzpc*pzpc + pxpr*pxpr + mass_proj*mass_proj );
818 G4double etc = std::sqrt ( pztc*pztc + pxta*pxta + mass_targ*mass_targ );
819
820 G4double pzpr = pzpc;
821 G4double pzta = pztc;
822 G4double epr = epc;
823 G4double eta = etc;
824
825// CM -> NN
826 G4double gammacm = boostToCM.gamma();
827 //G4double betacm = -boostToCM.beta();
828 G4double betacm = boostToCM.z();
829 pzpr = pzpc + betacm * gammacm * ( gammacm / ( 1. + gammacm ) * pzpc * betacm + epc );
830 pzta = pztc + betacm * gammacm * ( gammacm / ( 1. + gammacm ) * pztc * betacm + etc );
831 epr = gammacm * ( epc + betacm * pzpc );
832 eta = gammacm * ( etc + betacm * pztc );
833
834 //G4double betpr = pzpr / epr;
835 //G4double betta = pzta / eta;
836
837 G4double gammpr = epr / ( mass_proj );
838 G4double gammta = eta / ( mass_targ );
839
840 pzta = pzta / double ( at );
841 pxta = pxta / double ( at );
842
843 pzpr = pzpr / double ( ap );
844 pxpr = pxpr / double ( ap );
845
846 G4double zeroz = 0.0;
847
848 rzpr = rzpr -zeroz;
849 rzta = rzta -zeroz;
850
851 // Set results
852 coulomb_collision_gamma_proj = gammpr;
853 coulomb_collision_rx_proj = rxpr;
854 coulomb_collision_rz_proj = rzpr;
855 coulomb_collision_px_proj = pxpr;
856 coulomb_collision_pz_proj = pzpr;
857
858 coulomb_collision_gamma_targ = gammta;
859 coulomb_collision_rx_targ = rxta;
860 coulomb_collision_rz_targ = rzta;
861 coulomb_collision_px_targ = pxta;
862 coulomb_collision_pz_targ = pzta;
863
864}
865
866void G4LightIonQMDReaction::setEvaporationCh()
867{
868 //fEvaporation - 8 default channels
869 //fCombined - 8 default + 60 GEM
870 //fGEM - 2 default + 66 GEM
871 G4DeexChannelType ctype = gem ? fGEM : fCombined;
872 excitationHandler->SetDeexChannelsType(ctype);
873}
874
875void G4LightIonQMDReaction::ModelDescription(std::ostream& outFile) const
876{
877 outFile << "Lorentz covarianted Quantum Molecular Dynamics model for nucleus (particle) vs nucleus reactions\n";
878}
@ stopAndKill
std::vector< G4ReactionProduct * > G4ReactionProductVector
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition Randomize.hh:52
double beta() const
double z() const
Hep3Vector unit() const
double x() const
double y() const
double mag() const
double gamma() const
Hep3Vector findBoostToCM() const
static G4Alpha * Alpha()
Definition G4Alpha.cc:83
G4double GetElementCrossSection(const G4DynamicParticle *, G4int Z, const G4Material *mat) final
void BuildPhysicsTable(const G4ParticleDefinition &) final
void BuildPhysicsTable(const G4ParticleDefinition &) final
G4double GetElementCrossSection(const G4DynamicParticle *, G4int Z, const G4Material *mat) final
G4ParticleDefinition * GetDefinition() const
G4LorentzVector Get4Momentum() const
G4ThreeVector GetMomentum() const
G4ReactionProductVector * BreakItUp(const G4Fragment &theInitialState)
void SetDeexChannelsType(G4DeexChannelType val)
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
std::size_t GetNumberOfSecondaries() const
G4HadSecondary * GetSecondary(size_t i)
const G4Material * GetMaterial() const
G4double GetTotalMomentum() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
void SetCreatorModelID(G4int id)
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
static G4IonTable * GetIonTable()
G4double GetIonMass(G4int Z, G4int A, G4int nL=0, G4int lvl=0) const
void CalKinematicsOfBinaryCollisions(G4double)
void SetMeanField(G4LightIonQMDMeanField *meanfield)
void SetNucleus(G4LightIonQMDNucleus *aSystem)
void SetSystem(G4QMDSystem *aSystem)
std::vector< G4LightIonQMDNucleus * > DoClusterJudgment()
void SetTotalPotential(G4double x)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus) override
void ModelDescription(std::ostream &outFile) const override
G4int GetA_asInt() const
Definition G4Nucleus.hh:99
G4int GetZ_asInt() const
Definition G4Nucleus.hh:105
G4int GetAtomicNumber() const
const G4String & GetParticleType() const
G4int GetAtomicMass() const
const G4String & GetParticleName() const
static G4int GetModelID(const G4int modelIndex)
static G4PionMinus * PionMinus()
static G4PionPlus * PionPlus()
Definition G4PionPlus.cc:93
static G4Pow * GetInstance()
Definition G4Pow.cc:41
G4double powN(G4double x, G4int n) const
Definition G4Pow.cc:162
G4ThreeVector GetPosition()
const G4ParticleDefinition * GetDefinition()
G4LorentzVector Get4Momentum()
G4ThreeVector GetMomentum()
G4QMDParticipant * GetParticipant(G4int i)
G4int GetTotalNumberOfParticipant()
void SetParticipant(G4QMDParticipant *particle)
G4int GetNOCollision()
virtual G4double GetElementCrossSection(const G4DynamicParticle *, G4int Z, const G4Material *mat=nullptr)
HepLorentzVector boostOf(const HepLorentzVector &vec, const Hep3Vector &betaVector)