Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4INCLCrossSections.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Alain Boudard, CEA-Saclay, France
28// Joseph Cugnon, University of Liege, Belgium
29// Jean-Christophe David, CEA-Saclay, France
30// Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31// Sylvie Leray, CEA-Saclay, France
32// Davide Mancusi, CEA-Saclay, France
33//
34#define INCLXX_IN_GEANT4_MODE 1
35
36#include "globals.hh"
37
41#include "G4INCLLogger.hh"
48// #include <cassert>
49
50namespace G4INCL {
51
52 namespace {
53 G4ThreadLocal ICrossSections *theCrossSections;
54 }
55
56 namespace CrossSections {
57 G4double elastic(Particle const * const p1, Particle const * const p2) {
58 return theCrossSections->elastic(p1,p2);
59 }
60
61 G4double total(Particle const * const p1, Particle const * const p2) {
62 return theCrossSections->total(p1,p2);
63 }
64
65 G4double NDeltaToNN(Particle const * const p1, Particle const * const p2) {
66 return theCrossSections->NDeltaToNN(p1,p2);
67 }
68
69 G4double NNToNDelta(Particle const * const p1, Particle const * const p2) {
70 return theCrossSections->NNToNDelta(p1,p2);
71 }
72
73 G4double NNToxPiNN(const G4int xpi, Particle const * const p1, Particle const * const p2) {
74 return theCrossSections->NNToxPiNN(xpi,p1,p2);
75 }
76
77 G4double piNToDelta(Particle const * const p1, Particle const * const p2) {
78 return theCrossSections->piNToDelta(p1,p2);
79 }
80
81 G4double piNToxPiN(const G4int xpi, Particle const * const p1, Particle const * const p2) {
82 return theCrossSections->piNToxPiN(xpi,p1,p2);
83 }
84
85 G4double piNToEtaN(Particle const * const p1, Particle const * const p2) {
86 return theCrossSections->piNToEtaN(p1,p2);
87 }
88
89 G4double piNToOmegaN(Particle const * const p1, Particle const * const p2) {
90 return theCrossSections->piNToOmegaN(p1,p2);
91 }
92
93 G4double piNToEtaPrimeN(Particle const * const p1, Particle const * const p2) {
94 return theCrossSections->piNToEtaPrimeN(p1,p2);
95 }
96
97 G4double etaNToPiN(Particle const * const p1, Particle const * const p2) {
98 return theCrossSections->etaNToPiN(p1,p2);
99 }
100
101 G4double etaNToPiPiN(Particle const * const p1, Particle const * const p2) {
102 return theCrossSections->etaNToPiPiN(p1,p2);
103 }
104
105 G4double omegaNToPiN(Particle const * const p1, Particle const * const p2) {
106 return theCrossSections->omegaNToPiN(p1,p2);
107 }
108
109 G4double omegaNToPiPiN(Particle const * const p1, Particle const * const p2) {
110 return theCrossSections->omegaNToPiPiN(p1,p2);
111 }
112
113 G4double etaPrimeNToPiN(Particle const * const p1, Particle const * const p2) {
114 return theCrossSections->etaPrimeNToPiN(p1,p2);
115 }
116
117 G4double NNToNNEta(Particle const * const p1, Particle const * const p2) {
118 return theCrossSections->NNToNNEta(p1,p2);
119 }
120
121 G4double NNToNNEtaExclu(Particle const * const p1, Particle const * const p2) {
122 return theCrossSections->NNToNNEtaExclu(p1,p2);
123 }
124
125 G4double NNToNNEtaxPi(const G4int xpi, Particle const * const p1, Particle const * const p2) {
126 return theCrossSections->NNToNNEtaxPi(xpi,p1,p2);
127 }
128
129 G4double NNToNDeltaEta(Particle const * const p1, Particle const * const p2) {
130 return theCrossSections->NNToNDeltaEta(p1,p2);
131 }
132
133
134 G4double NNToNNOmega(Particle const * const p1, Particle const * const p2) {
135 return theCrossSections->NNToNNOmega(p1,p2);
136 }
137
138 G4double NNToNNOmegaExclu(Particle const * const p1, Particle const * const p2) {
139 return theCrossSections->NNToNNOmegaExclu(p1,p2);
140 }
141
142 G4double NNToNNOmegaxPi(const G4int xpi, Particle const * const p1, Particle const * const p2) {
143 return theCrossSections->NNToNNOmegaxPi(xpi,p1,p2);
144 }
145
146 G4double NNToNDeltaOmega(Particle const * const p1, Particle const * const p2) {
147 return theCrossSections->NNToNDeltaOmega(p1,p2);
148 }
149
150
151 G4double NYelastic(Particle const * const p1, Particle const * const p2) {
152 return theCrossSections->NYelastic(p1,p2);
153 }
154
155 G4double NKbelastic(Particle const * const p1, Particle const * const p2) {
156 return theCrossSections->NKbelastic(p1,p2);
157 }
158
159 G4double NKelastic(Particle const * const p1, Particle const * const p2) {
160 return theCrossSections->NKelastic(p1,p2);
161 }
162
163 G4double NNToNLK(Particle const * const p1, Particle const * const p2) {
164 return theCrossSections->NNToNLK(p1,p2);
165 }
166
167 G4double NNToNSK(Particle const * const p1, Particle const * const p2) {
168 return theCrossSections->NNToNSK(p1,p2);
169 }
170
171 G4double NNToNLKpi(Particle const * const p1, Particle const * const p2) {
172 return theCrossSections->NNToNLKpi(p1,p2);
173 }
174
175 G4double NNToNSKpi(Particle const * const p1, Particle const * const p2) {
176 return theCrossSections->NNToNSKpi(p1,p2);
177 }
178
179 G4double NNToNLK2pi(Particle const * const p1, Particle const * const p2) {
180 return theCrossSections->NNToNLK2pi(p1,p2);
181 }
182
183 G4double NNToNSK2pi(Particle const * const p1, Particle const * const p2) {
184 return theCrossSections->NNToNSK2pi(p1,p2);
185 }
186
187 G4double NNToNNKKb(Particle const * const p1, Particle const * const p2) {
188 return theCrossSections->NNToNNKKb(p1,p2);
189 }
190
191 G4double NNToMissingStrangeness(Particle const * const p1, Particle const * const p2) {
192 return theCrossSections->NNToMissingStrangeness(p1,p2);
193 }
194
195 G4double NDeltaToNLK(Particle const * const p1, Particle const * const p2) {
196 return theCrossSections->NDeltaToNLK(p1,p2);
197 }
198 G4double NDeltaToNSK(Particle const * const p1, Particle const * const p2) {
199 return theCrossSections->NDeltaToNSK(p1,p2);
200 }
201 G4double NDeltaToDeltaLK(Particle const * const p1, Particle const * const p2) {
202 return theCrossSections->NDeltaToDeltaLK(p1,p2);
203 }
204 G4double NDeltaToDeltaSK(Particle const * const p1, Particle const * const p2) {
205 return theCrossSections->NDeltaToDeltaSK(p1,p2);
206 }
207
208 G4double NDeltaToNNKKb(Particle const * const p1, Particle const * const p2) {
209 return theCrossSections->NDeltaToNNKKb(p1,p2);
210 }
211
212 G4double NpiToLK(Particle const * const p1, Particle const * const p2) {
213 return theCrossSections->NpiToLK(p1,p2);
214 }
215
216 G4double NpiToSK(Particle const * const p1, Particle const * const p2) {
217 return theCrossSections->NpiToSK(p1,p2);
218 }
219
220 G4double p_pimToSmKp(Particle const * const p1, Particle const * const p2) {
221 return theCrossSections->p_pimToSmKp(p1,p2);
222 }
223
224 G4double p_pimToSzKz(Particle const * const p1, Particle const * const p2) {
225 return theCrossSections->p_pimToSzKz(p1,p2);
226 }
227
228 G4double p_pizToSzKp(Particle const * const p1, Particle const * const p2) {
229 return theCrossSections->p_pizToSzKp(p1,p2);
230 }
231
232 G4double NpiToLKpi(Particle const * const p1, Particle const * const p2) {
233 return theCrossSections->NpiToLKpi(p1,p2);
234 }
235
236 G4double NpiToSKpi(Particle const * const p1, Particle const * const p2) {
237 return theCrossSections->NpiToSKpi(p1,p2);
238 }
239
240 G4double NpiToLK2pi(Particle const * const p1, Particle const * const p2) {
241 return theCrossSections->NpiToLK2pi(p1,p2);
242 }
243
244 G4double NpiToSK2pi(Particle const * const p1, Particle const * const p2) {
245 return theCrossSections->NpiToSK2pi(p1,p2);
246 }
247
248 G4double NpiToNKKb(Particle const * const p1, Particle const * const p2) {
249 return theCrossSections->NpiToNKKb(p1,p2);
250 }
251
252 G4double NpiToMissingStrangeness(Particle const * const p1, Particle const * const p2) {
253 return theCrossSections->NpiToMissingStrangeness(p1,p2);
254 }
255
256 G4double NLToNS(Particle const * const p1, Particle const * const p2) {
257 return theCrossSections->NLToNS(p1,p2);
258 }
259
260 G4double NSToNL(Particle const * const p1, Particle const * const p2) {
261 return theCrossSections->NSToNL(p1,p2);
262 }
263
264 G4double NSToNS(Particle const * const p1, Particle const * const p2) {
265 return theCrossSections->NSToNS(p1,p2);
266 }
267
268 G4double NKToNK(Particle const * const p1, Particle const * const p2) {
269 return theCrossSections->NKToNK(p1,p2);
270 }
271
272 G4double NKToNKpi(Particle const * const p1, Particle const * const p2) {
273 return theCrossSections->NKToNKpi(p1,p2);
274 }
275
276 G4double NKToNK2pi(Particle const * const p1, Particle const * const p2) {
277 return theCrossSections->NKToNK2pi(p1,p2);
278 }
279
280 G4double NKbToNKb(Particle const * const p1, Particle const * const p2) {
281 return theCrossSections->NKbToNKb(p1,p2);
282 }
283
284 G4double NKbToSpi(Particle const * const p1, Particle const * const p2) {
285 return theCrossSections->NKbToSpi(p1,p2);
286 }
287
288 G4double NKbToLpi(Particle const * const p1, Particle const * const p2) {
289 return theCrossSections->NKbToLpi(p1,p2);
290 }
291
292 G4double NNbarElastic(Particle const* const p1, Particle const* const p2){
293 return theCrossSections->NNbarElastic(p1,p2);
294 }
295 G4double NNbarCEX(Particle const* const p1, Particle const* const p2){
296 return theCrossSections->NNbarCEX(p1,p2);
297 }
298 G4double NNbarToLLbar(Particle const* const p1, Particle const* const p2){
299 return theCrossSections->NNbarToLLbar(p1,p2);
300 }
301
302 G4double NNbarToNNbarpi(Particle const* const p1, Particle const* const p2){
303 return theCrossSections->NNbarToNNbarpi(p1,p2);
304 }
305 G4double NNbarToNNbar2pi(Particle const* const p1, Particle const* const p2){
306 return theCrossSections->NNbarToNNbar2pi(p1,p2);
307 }
308 G4double NNbarToNNbar3pi(Particle const* const p1, Particle const* const p2){
309 return theCrossSections->NNbarToNNbar3pi(p1,p2);
310 }
311
312 G4double NNbarToAnnihilation(Particle const* const p1, Particle const* const p2){
313 return theCrossSections->NNbarToAnnihilation(p1,p2);
314 }
315
316 G4double NKbToS2pi(Particle const * const p1, Particle const * const p2) {
317 return theCrossSections->NKbToS2pi(p1,p2);
318 }
319
320 G4double NKbToL2pi(Particle const * const p1, Particle const * const p2) {
321 return theCrossSections->NKbToL2pi(p1,p2);
322 }
323
324 G4double NKbToNKbpi(Particle const * const p1, Particle const * const p2) {
325 return theCrossSections->NKbToNKbpi(p1,p2);
326 }
327
328 G4double NKbToNKb2pi(Particle const * const p1, Particle const * const p2) {
329 return theCrossSections->NKbToNKb2pi(p1,p2);
330 }
331
332
334 return theCrossSections->calculateNNAngularSlope(energyCM, iso);
335 }
336
337 G4double interactionDistancePiN(const G4double projectileKineticEnergy) {
338 ThreeVector nullVector;
339 ThreeVector unitVector(0., 0., 1.);
340
341 Particle piPlusProjectile(PiPlus, unitVector, nullVector);
342 piPlusProjectile.setEnergy(piPlusProjectile.getMass()+projectileKineticEnergy);
343 piPlusProjectile.adjustMomentumFromEnergy();
344 Particle piZeroProjectile(PiZero, unitVector, nullVector);
345 piZeroProjectile.setEnergy(piZeroProjectile.getMass()+projectileKineticEnergy);
346 piZeroProjectile.adjustMomentumFromEnergy();
347 Particle piMinusProjectile(PiMinus, unitVector, nullVector);
348 piMinusProjectile.setEnergy(piMinusProjectile.getMass()+projectileKineticEnergy);
349 piMinusProjectile.adjustMomentumFromEnergy();
350
351 Particle protonTarget(Proton, nullVector, nullVector);
352 Particle neutronTarget(Neutron, nullVector, nullVector);
353 const G4double sigmapipp = total(&piPlusProjectile, &protonTarget);
354 const G4double sigmapipn = total(&piPlusProjectile, &neutronTarget);
355 const G4double sigmapi0p = total(&piZeroProjectile, &protonTarget);
356 const G4double sigmapi0n = total(&piZeroProjectile, &neutronTarget);
357 const G4double sigmapimp = total(&piMinusProjectile, &protonTarget);
358 const G4double sigmapimn = total(&piMinusProjectile, &neutronTarget);
359 /* We compute the interaction distance from the largest of the pi-N cross
360 * sections. Note that this is different from INCL4.6, which just takes the
361 * average of the six, and will in general lead to a different geometrical
362 * cross section.
363 */
364 const G4double largestSigma = std::max(sigmapipp, std::max(sigmapipn, std::max(sigmapi0p, std::max(sigmapi0n, std::max(sigmapimp,sigmapimn)))));
365 const G4double interactionDistance = std::sqrt(largestSigma/Math::tenPi);
366
367 return interactionDistance;
368 }
369
370 G4double interactionDistanceNN(const ParticleSpecies &aSpecies, const G4double kineticEnergy) {
371// assert(aSpecies.theType==Proton || aSpecies.theType==Neutron || aSpecies.theType==Composite);
372// assert(aSpecies.theA>0);
373 ThreeVector nullVector;
374 ThreeVector unitVector(0.,0.,1.);
375
376 const G4double kineticEnergyPerNucleon = kineticEnergy / aSpecies.theA;
377
378 Particle protonProjectile(Proton, unitVector, nullVector);
379 protonProjectile.setEnergy(protonProjectile.getMass()+kineticEnergyPerNucleon);
380 protonProjectile.adjustMomentumFromEnergy();
381 Particle neutronProjectile(Neutron, unitVector, nullVector);
382 neutronProjectile.setEnergy(neutronProjectile.getMass()+kineticEnergyPerNucleon);
383 neutronProjectile.adjustMomentumFromEnergy();
384
385 Particle protonTarget(Proton, nullVector, nullVector);
386 Particle neutronTarget(Neutron, nullVector, nullVector);
387 const G4double sigmapp = total(&protonProjectile, &protonTarget);
388 const G4double sigmapn = total(&protonProjectile, &neutronTarget);
389 const G4double sigmann = total(&neutronProjectile, &neutronTarget);
390 /* We compute the interaction distance from the largest of the NN cross
391 * sections. Note that this is different from INCL4.6, which just takes the
392 * average of the four, and will in general lead to a different geometrical
393 * cross section.
394 */
395 const G4double largestSigma = std::max(sigmapp, std::max(sigmapn, sigmann));
396 const G4double interactionDistance = std::sqrt(largestSigma/Math::tenPi);
397
398 return interactionDistance;
399 }
400
402 ThreeVector nullVector;
403 ThreeVector unitVector(0.,0.,1.);
404
405 Particle kpProjectile(KPlus, unitVector, nullVector);
406 kpProjectile.setEnergy(kpProjectile.getMass()+kineticEnergy);
407 kpProjectile.adjustMomentumFromEnergy();
408 Particle kzProjectile(KZero, unitVector, nullVector);
409 kzProjectile.setEnergy(kzProjectile.getMass()+kineticEnergy);
410 kzProjectile.adjustMomentumFromEnergy();
411
412 Particle protonTarget(Proton, nullVector, nullVector);
413 Particle neutronTarget(Neutron, nullVector, nullVector);
414 const G4double sigmakpp = total(&kpProjectile, &protonTarget);
415 const G4double sigmakpn = total(&kpProjectile, &neutronTarget);
416 const G4double sigmakzp = total(&kzProjectile, &protonTarget);
417 const G4double sigmakzn = total(&kzProjectile, &neutronTarget);
418
419 const G4double largestSigma = std::max(sigmakpp, std::max(sigmakpn, std::max(sigmakzp, sigmakzn)));
420 const G4double interactionDistance = std::sqrt(largestSigma/Math::tenPi);
421
422 return interactionDistance;
423 }
424
426 ThreeVector nullVector;
427 ThreeVector unitVector(0.,0.,1.);
428
429 Particle kmProjectile(KMinus, unitVector, nullVector);
430 kmProjectile.setEnergy(kmProjectile.getMass()+kineticEnergy);
431 kmProjectile.adjustMomentumFromEnergy();
432 Particle kzProjectile(KZeroBar, unitVector, nullVector);
433 kzProjectile.setEnergy(kzProjectile.getMass()+kineticEnergy);
434 kzProjectile.adjustMomentumFromEnergy();
435
436 Particle protonTarget(Proton, nullVector, nullVector);
437 Particle neutronTarget(Neutron, nullVector, nullVector);
438 const G4double sigmakmp = total(&kmProjectile, &protonTarget);
439 const G4double sigmakmn = total(&kmProjectile, &neutronTarget);
440 const G4double sigmakzp = total(&kzProjectile, &protonTarget);
441 const G4double sigmakzn = total(&kzProjectile, &neutronTarget);
442
443 const G4double largestSigma = std::max(sigmakmp, std::max(sigmakmn, std::max(sigmakzp, sigmakzn)));
444 const G4double interactionDistance = std::sqrt(largestSigma/Math::tenPi);
445
446 return interactionDistance;
447 }
448
450 ThreeVector nullVector;
451 ThreeVector unitVector(0.,0.,1.);
452
453 Particle lProjectile(Lambda, unitVector, nullVector);
454 lProjectile.setEnergy(lProjectile.getMass()+kineticEnergy);
455 lProjectile.adjustMomentumFromEnergy();
456 Particle spProjectile(SigmaPlus, unitVector, nullVector);
457 spProjectile.setEnergy(spProjectile.getMass()+kineticEnergy);
458 spProjectile.adjustMomentumFromEnergy();
459 Particle szProjectile(SigmaZero, unitVector, nullVector);
460 szProjectile.setEnergy(szProjectile.getMass()+kineticEnergy);
461 szProjectile.adjustMomentumFromEnergy();
462 Particle smProjectile(SigmaMinus, unitVector, nullVector);
463 smProjectile.setEnergy(smProjectile.getMass()+kineticEnergy);
464 smProjectile.adjustMomentumFromEnergy();
465
466 Particle protonTarget(Proton, nullVector, nullVector);
467 Particle neutronTarget(Neutron, nullVector, nullVector);
468 const G4double sigmalp = total(&lProjectile, &protonTarget);
469 const G4double sigmaln = total(&lProjectile, &neutronTarget);
470 const G4double sigmaspp = total(&spProjectile, &protonTarget);
471 const G4double sigmaspn = total(&spProjectile, &neutronTarget);
472 const G4double sigmaszp = total(&szProjectile, &protonTarget);
473 const G4double sigmaszn = total(&szProjectile, &neutronTarget);
474 const G4double sigmasmp = total(&smProjectile, &protonTarget);
475 const G4double sigmasmn = total(&smProjectile, &neutronTarget);
476
477 const G4double largestSigma = std::max(sigmalp, std::max(sigmaln, std::max(sigmaspp, std::max(sigmaspn, std::max(sigmaszp, std::max(sigmaszn, std::max(sigmasmp, sigmasmn)))))));
478 const G4double interactionDistance = std::sqrt(largestSigma/Math::tenPi);
479
480 return interactionDistance;
481 }
482
484 theCrossSections = c;
485 }
486
488 delete theCrossSections;
489 theCrossSections = NULL;
490 }
491
492 void initialize(Config const * const theConfig) {
493 CrossSectionsType crossSections = theConfig->getCrossSectionsType();
494 if(crossSections == INCL46CrossSections)
496 else if(crossSections == MultiPionsCrossSections)
498 else if(crossSections == TruncatedMultiPionsCrossSections) {
499 const G4int nMaxPi = theConfig->getMaxNumberMultipions();
500 if(nMaxPi>0)
502 else {
503 INCL_WARN("Truncated multipion cross sections were requested, but the specified maximum\n"
504 << "number of pions is <=0. Falling back to standard multipion cross-sections.\n");
506 }
507 } else if(crossSections == MultiPionsAndResonancesCrossSections)
509 else if(crossSections == StrangenessCrossSections)
511 else if(crossSections == AntiparticlesCrossSections)
513 }
514 }
515}
Multipion, mesonic Resonances, strange cross sections and antinucleon as projectile.
Cross sections used in INCL4.6.
Multipion and mesonic Resonances cross sections.
Cross sections used in INCL Multipions.
Multipion, mesonic Resonances and strange cross sections.
Truncated multipion cross sections.
#define INCL_WARN(x)
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
G4int getMaxNumberMultipions() const
Get the maximum number of pions for multipion collisions.
CrossSectionsType getCrossSectionsType() const
Get the Cross Section type.
Multipion, mesonic Resonances and strange cross sections.
Cross sections used in INCL4.6.
Cross sections used in INCL Multipions.
Multipion, mesonic Resonances and strange cross sections.
Abstract interface for the cross-section classes.
const ThreeVector & adjustMomentumFromEnergy()
Rescale the momentum to match the total energy.
void setEnergy(G4double energy)
G4double getMass() const
Get the cached particle mass.
G4double NSToNL(Particle const *const p1, Particle const *const p2)
G4double NNToNNKKb(Particle const *const p1, Particle const *const p2)
G4double elastic(Particle const *const p1, Particle const *const p2)
G4double NpiToSK(Particle const *const p1, Particle const *const p2)
G4double NNToNNOmega(Particle const *const p1, Particle const *const p2)
G4double NNToNNEta(Particle const *const p1, Particle const *const p2)
G4double piNToOmegaN(Particle const *const p1, Particle const *const p2)
G4double NNbarCEX(Particle const *const p1, Particle const *const p2)
G4double NKbToNKb2pi(Particle const *const p1, Particle const *const p2)
G4double interactionDistanceKbarN(const G4double projectileKineticEnergy)
Compute the "interaction distance".
G4double interactionDistancePiN(const G4double projectileKineticEnergy)
Compute the "interaction distance".
G4double NNToNDeltaOmega(Particle const *const p1, Particle const *const p2)
G4double NDeltaToDeltaLK(Particle const *const p1, Particle const *const p2)
G4double NNToNSKpi(Particle const *const p1, Particle const *const p2)
G4double etaNToPiN(Particle const *const p1, Particle const *const p2)
G4double NDeltaToNNKKb(Particle const *const p1, Particle const *const p2)
G4double NKbToLpi(Particle const *const p1, Particle const *const p2)
G4double NNToNLK2pi(Particle const *const p1, Particle const *const p2)
G4double etaNToPiPiN(Particle const *const p1, Particle const *const p2)
G4double NYelastic(Particle const *const p1, Particle const *const p2)
G4double NKbToS2pi(Particle const *const p1, Particle const *const p2)
G4double piNToEtaN(Particle const *const p1, Particle const *const p2)
G4double NNbarToAnnihilation(Particle const *const p1, Particle const *const p2)
Nucleon-AntiNucleon total annihilation cross sections.
G4double omegaNToPiN(Particle const *const p1, Particle const *const p2)
G4double NDeltaToNSK(Particle const *const p1, Particle const *const p2)
G4double NKbToSpi(Particle const *const p1, Particle const *const p2)
G4double NNToNDelta(Particle const *const p1, Particle const *const p2)
G4double p_pimToSzKz(Particle const *const p1, Particle const *const p2)
G4double NNToNSK(Particle const *const p1, Particle const *const p2)
G4double NDeltaToNLK(Particle const *const p1, Particle const *const p2)
G4double NLToNS(Particle const *const p1, Particle const *const p2)
G4double piNToDelta(Particle const *const p1, Particle const *const p2)
G4double NKbToNKb(Particle const *const p1, Particle const *const p2)
G4double NNToNSK2pi(Particle const *const p1, Particle const *const p2)
G4double NNbarToNNbar3pi(Particle const *const p1, Particle const *const p2)
G4double NNToNLK(Particle const *const p1, Particle const *const p2)
Strange cross sections.
G4double NNToNNEtaExclu(Particle const *const p1, Particle const *const p2)
G4double interactionDistanceKN(const G4double projectileKineticEnergy)
Compute the "interaction distance".
G4double NNToNDeltaEta(Particle const *const p1, Particle const *const p2)
G4double NNToNNOmegaxPi(const G4int xpi, Particle const *const p1, Particle const *const p2)
G4double NNToNNEtaxPi(const G4int xpi, Particle const *const p1, Particle const *const p2)
G4double NNbarToNNbarpi(Particle const *const p1, Particle const *const p2)
Nucleon-AntiNucleon to Nucleon-AntiNucleon + pions cross sections.
G4double NKelastic(Particle const *const p1, Particle const *const p2)
G4double interactionDistanceYN(const G4double projectileKineticEnergy)
Compute the "interaction distance".
G4double NSToNS(Particle const *const p1, Particle const *const p2)
G4double NpiToNKKb(Particle const *const p1, Particle const *const p2)
G4double NpiToLK2pi(Particle const *const p1, Particle const *const p2)
G4double omegaNToPiPiN(Particle const *const p1, Particle const *const p2)
G4double NDeltaToDeltaSK(Particle const *const p1, Particle const *const p2)
G4double NpiToMissingStrangeness(Particle const *const p1, Particle const *const p2)
G4double NNbarToNNbar2pi(Particle const *const p1, Particle const *const p2)
G4double total(Particle const *const p1, Particle const *const p2)
void setCrossSections(ICrossSections *c)
G4double NDeltaToNN(Particle const *const p1, Particle const *const p2)
G4double NpiToLKpi(Particle const *const p1, Particle const *const p2)
G4double piNToEtaPrimeN(Particle const *const p1, Particle const *const p2)
G4double NKbelastic(Particle const *const p1, Particle const *const p2)
G4double NKbToNKbpi(Particle const *const p1, Particle const *const p2)
G4double NNToNLKpi(Particle const *const p1, Particle const *const p2)
G4double p_pizToSzKp(Particle const *const p1, Particle const *const p2)
G4double NKbToL2pi(Particle const *const p1, Particle const *const p2)
void initialize(Config const *const theConfig)
G4double etaPrimeNToPiN(Particle const *const p1, Particle const *const p2)
G4double NNToxPiNN(const G4int xpi, Particle const *const p1, Particle const *const p2)
G4double NKToNK2pi(Particle const *const p1, Particle const *const p2)
G4double NKToNKpi(Particle const *const p1, Particle const *const p2)
G4double calculateNNAngularSlope(G4double energyCM, G4int iso)
Calculate the slope of the NN DDXS.
G4double NNToNNOmegaExclu(Particle const *const p1, Particle const *const p2)
G4double interactionDistanceNN(const ParticleSpecies &aSpecies, const G4double kineticEnergy)
Compute the "interaction distance".
G4double NpiToSK2pi(Particle const *const p1, Particle const *const p2)
G4double NKToNK(Particle const *const p1, Particle const *const p2)
G4double NNToMissingStrangeness(Particle const *const p1, Particle const *const p2)
G4double piNToxPiN(const G4int xpi, Particle const *const p1, Particle const *const p2)
G4double NNbarToLLbar(Particle const *const p1, Particle const *const p2)
G4double NpiToLK(Particle const *const p1, Particle const *const p2)
G4double NNbarElastic(Particle const *const p1, Particle const *const p2)
antiparticle cross sections
G4double p_pimToSmKp(Particle const *const p1, Particle const *const p2)
G4double NpiToSKpi(Particle const *const p1, Particle const *const p2)
const G4double tenPi
@ MultiPionsAndResonancesCrossSections
@ AntiparticlesCrossSections
@ TruncatedMultiPionsCrossSections
#define G4ThreadLocal
Definition tls.hh:77