Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PenelopeComptonModel Class Reference

#include <G4PenelopeComptonModel.hh>

+ Inheritance diagram for G4PenelopeComptonModel:

Public Member Functions

 G4PenelopeComptonModel (const G4ParticleDefinition *p=nullptr, const G4String &processName="PenCompton")
 
virtual ~G4PenelopeComptonModel ()
 
void Initialise (const G4ParticleDefinition *, const G4DataVector &) override
 
void InitialiseLocal (const G4ParticleDefinition *, G4VEmModel *masterModel) override
 
G4double CrossSectionPerVolume (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX) override
 
G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, G4double, G4double, G4double, G4double, G4double) override
 
void SampleSecondaries (std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
 
void SetVerbosityLevel (G4int lev)
 
G4int GetVerbosityLevel ()
 
G4PenelopeComptonModeloperator= (const G4PenelopeComptonModel &right)=delete
 
 G4PenelopeComptonModel (const G4PenelopeComptonModel &)=delete
 
- Public Member Functions inherited from G4VEmModel
 G4VEmModel (const G4String &nam)
 
virtual ~G4VEmModel ()
 
virtual void InitialiseForMaterial (const G4ParticleDefinition *, const G4Material *)
 
virtual void InitialiseForElement (const G4ParticleDefinition *, G4int Z)
 
virtual G4double ComputeDEDXPerVolume (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=DBL_MAX)
 
virtual G4double GetPartialCrossSection (const G4Material *, G4int level, const G4ParticleDefinition *, G4double kineticEnergy)
 
virtual G4double ComputeCrossSectionPerShell (const G4ParticleDefinition *, G4int Z, G4int shellIdx, G4double kinEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
virtual G4double ChargeSquareRatio (const G4Track &)
 
virtual G4double GetChargeSquareRatio (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual G4double GetParticleCharge (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual void StartTracking (G4Track *)
 
virtual void CorrectionsAlongStep (const G4MaterialCutsCouple *, const G4DynamicParticle *, const G4double &length, G4double &eloss)
 
virtual G4double Value (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy)
 
virtual G4double MinPrimaryEnergy (const G4Material *, const G4ParticleDefinition *, G4double cut=0.0)
 
virtual G4double MinEnergyCut (const G4ParticleDefinition *, const G4MaterialCutsCouple *)
 
virtual void SetupForMaterial (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual void DefineForRegion (const G4Region *)
 
virtual void FillNumberOfSecondaries (G4int &numberOfTriplets, G4int &numberOfRecoil)
 
virtual void ModelDescription (std::ostream &outFile) const
 
void InitialiseElementSelectors (const G4ParticleDefinition *, const G4DataVector &)
 
std::vector< G4EmElementSelector * > * GetElementSelectors ()
 
void SetElementSelectors (std::vector< G4EmElementSelector * > *)
 
G4double ComputeDEDX (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=DBL_MAX)
 
G4double CrossSection (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4double ComputeMeanFreePath (const G4ParticleDefinition *, G4double kineticEnergy, const G4Material *, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, const G4Element *, G4double kinEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementSelectRandomAtom (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementSelectTargetAtom (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double logKineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementSelectRandomAtom (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementGetCurrentElement (const G4Material *mat=nullptr) const
 
G4int SelectRandomAtomNumber (const G4Material *) const
 
const G4IsotopeGetCurrentIsotope (const G4Element *elm=nullptr) const
 
G4int SelectIsotopeNumber (const G4Element *) const
 
void SetParticleChange (G4VParticleChange *, G4VEmFluctuationModel *f=nullptr)
 
void SetCrossSectionTable (G4PhysicsTable *, G4bool isLocal)
 
G4ElementDataGetElementData ()
 
G4PhysicsTableGetCrossSectionTable ()
 
G4VEmFluctuationModelGetModelOfFluctuations ()
 
G4VEmAngularDistributionGetAngularDistribution ()
 
G4VEmModelGetTripletModel ()
 
void SetTripletModel (G4VEmModel *)
 
void SetAngularDistribution (G4VEmAngularDistribution *)
 
G4double HighEnergyLimit () const
 
G4double LowEnergyLimit () const
 
G4double HighEnergyActivationLimit () const
 
G4double LowEnergyActivationLimit () const
 
G4double PolarAngleLimit () const
 
G4double SecondaryThreshold () const
 
G4bool DeexcitationFlag () const
 
G4bool ForceBuildTableFlag () const
 
G4bool UseAngularGeneratorFlag () const
 
void SetAngularGeneratorFlag (G4bool)
 
void SetHighEnergyLimit (G4double)
 
void SetLowEnergyLimit (G4double)
 
void SetActivationHighEnergyLimit (G4double)
 
void SetActivationLowEnergyLimit (G4double)
 
G4bool IsActive (G4double kinEnergy) const
 
void SetPolarAngleLimit (G4double)
 
void SetSecondaryThreshold (G4double)
 
void SetDeexcitationFlag (G4bool val)
 
void SetForceBuildTable (G4bool val)
 
void SetFluctuationFlag (G4bool val)
 
void SetMasterThread (G4bool val)
 
G4bool IsMaster () const
 
void SetUseBaseMaterials (G4bool val)
 
G4bool UseBaseMaterials () const
 
G4double MaxSecondaryKinEnergy (const G4DynamicParticle *dynParticle)
 
const G4StringGetName () const
 
void SetCurrentCouple (const G4MaterialCutsCouple *)
 
G4bool IsLocked () const
 
void SetLocked (G4bool)
 
void SetLPMFlag (G4bool)
 
G4VEmModeloperator= (const G4VEmModel &right)=delete
 
 G4VEmModel (const G4VEmModel &)=delete
 

Protected Attributes

G4ParticleChangeForGammafParticleChange
 
const G4ParticleDefinitionfParticle
 
- Protected Attributes inherited from G4VEmModel
G4ElementDatafElementData = nullptr
 
G4VParticleChangepParticleChange = nullptr
 
G4PhysicsTablexSectionTable = nullptr
 
const G4MaterialpBaseMaterial = nullptr
 
const std::vector< G4double > * theDensityFactor = nullptr
 
const std::vector< G4int > * theDensityIdx = nullptr
 
G4double inveplus
 
G4double pFactor = 1.0
 
std::size_t currentCoupleIndex = 0
 
std::size_t basedCoupleIndex = 0
 
G4bool lossFlucFlag = true
 

Additional Inherited Members

- Protected Member Functions inherited from G4VEmModel
G4ParticleChangeForLossGetParticleChangeForLoss ()
 
G4ParticleChangeForGammaGetParticleChangeForGamma ()
 
virtual G4double MaxSecondaryEnergy (const G4ParticleDefinition *, G4double kineticEnergy)
 
const G4MaterialCutsCoupleCurrentCouple () const
 
void SetCurrentElement (const G4Element *)
 

Detailed Description

Definition at line 62 of file G4PenelopeComptonModel.hh.

Constructor & Destructor Documentation

◆ G4PenelopeComptonModel() [1/2]

G4PenelopeComptonModel::G4PenelopeComptonModel ( const G4ParticleDefinition * p = nullptr,
const G4String & processName = "PenCompton" )
explicit

Definition at line 63 of file G4PenelopeComptonModel.cc.

65 :G4VEmModel(nam),fParticleChange(nullptr),fParticle(nullptr),
66 fAtomDeexcitation(nullptr),
67 fOscManager(nullptr),fIsInitialised(false)
68{
69 fIntrinsicLowEnergyLimit = 100.0*eV;
70 fIntrinsicHighEnergyLimit = 100.0*GeV;
71 SetHighEnergyLimit(fIntrinsicHighEnergyLimit);
72 //
74
75 if (part)
76 SetParticle(part);
77
78 fVerboseLevel= 0;
79 // Verbosity scale:
80 // 0 = nothing
81 // 1 = warning for energy non-conservation
82 // 2 = details of energy budget
83 // 3 = calculation of cross sections, file openings, sampling of atoms
84 // 4 = entering in methods
85
86 //Mark this model as "applicable" for atomic deexcitation
88
89 fTransitionManager = G4AtomicTransitionManager::Instance();
90}
static G4AtomicTransitionManager * Instance()
G4ParticleChangeForGamma * fParticleChange
const G4ParticleDefinition * fParticle
static G4PenelopeOscillatorManager * GetOscillatorManager()
void SetHighEnergyLimit(G4double)
void SetDeexcitationFlag(G4bool val)
G4VEmModel(const G4String &nam)
Definition G4VEmModel.cc:67

◆ ~G4PenelopeComptonModel()

G4PenelopeComptonModel::~G4PenelopeComptonModel ( )
virtual

Definition at line 94 of file G4PenelopeComptonModel.cc.

95{;}

◆ G4PenelopeComptonModel() [2/2]

G4PenelopeComptonModel::G4PenelopeComptonModel ( const G4PenelopeComptonModel & )
delete

Member Function Documentation

◆ ComputeCrossSectionPerAtom()

G4double G4PenelopeComptonModel::ComputeCrossSectionPerAtom ( const G4ParticleDefinition * ,
G4double ,
G4double ,
G4double ,
G4double ,
G4double  )
overridevirtual

Reimplemented from G4VEmModel.

Definition at line 248 of file G4PenelopeComptonModel.cc.

254{
255 G4cout << "*** G4PenelopeComptonModel -- WARNING ***" << G4endl;
256 G4cout << "Penelope Compton model v2008 does not calculate cross section _per atom_ " << G4endl;
257 G4cout << "so the result is always zero. For physics values, please invoke " << G4endl;
258 G4cout << "GetCrossSectionPerVolume() or GetMeanFreePath() via the G4EmCalculator" << G4endl;
259 return 0;
260}
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout

◆ CrossSectionPerVolume()

G4double G4PenelopeComptonModel::CrossSectionPerVolume ( const G4Material * material,
const G4ParticleDefinition * p,
G4double kineticEnergy,
G4double cutEnergy = 0.0,
G4double maxEnergy = DBL_MAX )
overridevirtual

Reimplemented from G4VEmModel.

Definition at line 176 of file G4PenelopeComptonModel.cc.

181{
182 // Penelope model v2008 to calculate the Compton scattering cross section:
183 // D. Brusa et al., Nucl. Instrum. Meth. A 379 (1996) 167
184 //
185 // The cross section for Compton scattering is calculated according to the Klein-Nishina
186 // formula for energy > 5 MeV.
187 // For E < 5 MeV it is used a parametrization for the differential cross-section dSigma/dOmega,
188 // which is integrated numerically in cos(theta), G4PenelopeComptonModel::DifferentialCrossSection().
189 // The parametrization includes the J(p)
190 // distribution profiles for the atomic shells, that are tabulated from Hartree-Fock calculations
191 // from F. Biggs et al., At. Data Nucl. Data Tables 16 (1975) 201
192 //
193 if (fVerboseLevel > 3)
194 G4cout << "Calling CrossSectionPerVolume() of G4PenelopeComptonModel" << G4endl;
195 SetupForMaterial(p, material, energy);
196
197 G4double cs = 0;
198 //Force null cross-section if below the low-energy edge of the table
199 if (energy < LowEnergyLimit())
200 return cs;
201
202 //Retrieve the oscillator table for this material
203 G4PenelopeOscillatorTable* theTable = fOscManager->GetOscillatorTableCompton(material);
204
205 if (energy < 5*MeV) //explicit calculation for E < 5 MeV
206 {
207 size_t numberOfOscillators = theTable->size();
208 for (size_t i=0;i<numberOfOscillators;i++)
209 {
210 G4PenelopeOscillator* theOsc = (*theTable)[i];
211 //sum contributions coming from each oscillator
212 cs += OscillatorTotalCrossSection(energy,theOsc);
213 }
214 }
215 else //use Klein-Nishina for E>5 MeV
216 cs = KleinNishinaCrossSection(energy,material);
217
218 //cross sections are in units of pi*classic_electr_radius^2
219 cs *= pi*classic_electr_radius*classic_electr_radius;
220
221 //Now, cs is the cross section *per molecule*, let's calculate the
222 //cross section per volume
223 G4double atomDensity = material->GetTotNbOfAtomsPerVolume();
224 G4double atPerMol = fOscManager->GetAtomsPerMolecule(material);
225
226 if (fVerboseLevel > 3)
227 G4cout << "Material " << material->GetName() << " has " << atPerMol <<
228 "atoms per molecule" << G4endl;
229
230 G4double moleculeDensity = 0.;
231
232 if (atPerMol)
233 moleculeDensity = atomDensity/atPerMol;
234
235 G4double csvolume = cs*moleculeDensity;
236
237 if (fVerboseLevel > 2)
238 G4cout << "Compton mean free path at " << energy/keV << " keV for material " <<
239 material->GetName() << " = " << (1./csvolume)/mm << " mm" << G4endl;
240 return csvolume;
241}
std::vector< G4PenelopeOscillator * > G4PenelopeOscillatorTable
double G4double
Definition G4Types.hh:83
G4double GetTotNbOfAtomsPerVolume() const
const G4String & GetName() const
G4double GetAtomsPerMolecule(const G4Material *)
Returns the total number of atoms per molecule.
G4PenelopeOscillatorTable * GetOscillatorTableCompton(const G4Material *)
G4double LowEnergyLimit() const
virtual void SetupForMaterial(const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
G4double energy(const ThreeVector &p, const G4double m)

◆ GetVerbosityLevel()

G4int G4PenelopeComptonModel::GetVerbosityLevel ( )
inline

Definition at line 97 of file G4PenelopeComptonModel.hh.

97{return fVerboseLevel;};

◆ Initialise()

void G4PenelopeComptonModel::Initialise ( const G4ParticleDefinition * part,
const G4DataVector &  )
overridevirtual

Implements G4VEmModel.

Definition at line 99 of file G4PenelopeComptonModel.cc.

101{
102 if (fVerboseLevel > 3)
103 G4cout << "Calling G4PenelopeComptonModel::Initialise()" << G4endl;
104
105 fAtomDeexcitation = G4LossTableManager::Instance()->AtomDeexcitation();
106 //Issue warning if the AtomicDeexcitation has not been declared
107 if (!fAtomDeexcitation)
108 {
109 G4cout << G4endl;
110 G4cout << "WARNING from G4PenelopeComptonModel " << G4endl;
111 G4cout << "Atomic de-excitation module is not instantiated, so there will not be ";
112 G4cout << "any fluorescence/Auger emission." << G4endl;
113 G4cout << "Please make sure this is intended" << G4endl;
114 }
115
116 SetParticle(part);
117
118 if (IsMaster() && part == fParticle)
119 {
120
121 if (fVerboseLevel > 0)
122 {
123 G4cout << "Penelope Compton model v2008 is initialized " << G4endl
124 << "Energy range: "
125 << LowEnergyLimit() / keV << " keV - "
126 << HighEnergyLimit() / GeV << " GeV";
127 }
128 //Issue a warning, if the model is going to be used down to a
129 //energy which is outside the validity of the model itself
130 if (LowEnergyLimit() < fIntrinsicLowEnergyLimit)
131 {
133 ed << "Using the Penelope Compton model outside its intrinsic validity range. "
134 << G4endl;
135 ed << "-> LowEnergyLimit() in process = " << LowEnergyLimit()/keV << "keV " << G4endl;
136 ed << "-> Instrinsic low-energy limit = " << fIntrinsicLowEnergyLimit/keV << "keV "
137 << G4endl;
138 ed << "Result of the simulation have to be taken with care" << G4endl;
139 G4Exception("G4PenelopeComptonModel::Initialise()",
140 "em2100",JustWarning,ed);
141 }
142 }
143
144 if(fIsInitialised) return;
146 fIsInitialised = true;
147
148}
@ JustWarning
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
std::ostringstream G4ExceptionDescription
static G4LossTableManager * Instance()
G4VAtomDeexcitation * AtomDeexcitation()
G4ParticleChangeForGamma * GetParticleChangeForGamma()
G4bool IsMaster() const
G4double HighEnergyLimit() const

◆ InitialiseLocal()

void G4PenelopeComptonModel::InitialiseLocal ( const G4ParticleDefinition * part,
G4VEmModel * masterModel )
overridevirtual

Reimplemented from G4VEmModel.

Definition at line 152 of file G4PenelopeComptonModel.cc.

154{
155 if (fVerboseLevel > 3)
156 G4cout << "Calling G4PenelopeComptonModel::InitialiseLocal()" << G4endl;
157 //
158 //Check that particle matches: one might have multiple master models (e.g.
159 //for e+ and e-).
160 //
161 if (part == fParticle)
162 {
163 //Get the const table pointers from the master to the workers
164 const G4PenelopeComptonModel* theModel =
165 static_cast<G4PenelopeComptonModel*> (masterModel);
166
167 //Same verbosity for all workers, as the master
168 fVerboseLevel = theModel->fVerboseLevel;
169 }
170 return;
171}

◆ operator=()

G4PenelopeComptonModel & G4PenelopeComptonModel::operator= ( const G4PenelopeComptonModel & right)
delete

◆ SampleSecondaries()

void G4PenelopeComptonModel::SampleSecondaries ( std::vector< G4DynamicParticle * > * fvect,
const G4MaterialCutsCouple * couple,
const G4DynamicParticle * aDynamicGamma,
G4double tmin,
G4double maxEnergy )
overridevirtual

Implements G4VEmModel.

Definition at line 264 of file G4PenelopeComptonModel.cc.

269{
270 // Penelope model v2008 to sample the Compton scattering final state.
271 // D. Brusa et al., Nucl. Instrum. Meth. A 379 (1996) 167
272 // The model determines also the original shell from which the electron is expelled,
273 // in order to produce fluorescence de-excitation (from G4DeexcitationManager)
274 //
275 // The final state for Compton scattering is calculated according to the Klein-Nishina
276 // formula for energy > 5 MeV. In this case, the Doppler broadening is negligible and
277 // one can assume that the target electron is at rest.
278 // For E < 5 MeV it is used the parametrization for the differential cross-section dSigma/dOmega,
279 // to sample the scattering angle and the energy of the emerging electron, which is
280 // G4PenelopeComptonModel::DifferentialCrossSection(). The rejection method is
281 // used to sample cos(theta). The efficiency increases monotonically with photon energy and is
282 // nearly independent on the Z; typical values are 35%, 80% and 95% for 1 keV, 1 MeV and 10 MeV,
283 // respectively.
284 // The parametrization includes the J(p) distribution profiles for the atomic shells, that are
285 // tabulated
286 // from Hartree-Fock calculations from F. Biggs et al., At. Data Nucl. Data Tables 16 (1975) 201.
287 // Doppler broadening is included.
288 //
289
290 if (fVerboseLevel > 3)
291 G4cout << "Calling SampleSecondaries() of G4PenelopeComptonModel" << G4endl;
292
293 G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy();
294
295 // do nothing below the threshold
296 // should never get here because the XS is zero below the limit
297 if(photonEnergy0 < LowEnergyLimit())
298 return;
299
300 G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection();
301 const G4Material* material = couple->GetMaterial();
302
303 G4PenelopeOscillatorTable* theTable = fOscManager->GetOscillatorTableCompton(material);
304
305 const G4int nmax = 64;
306 G4double rn[nmax]={0.0};
307 G4double pac[nmax]={0.0};
308
309 G4double S=0.0;
310 G4double epsilon = 0.0;
311 G4double cosTheta = 1.0;
312 G4double hartreeFunc = 0.0;
313 G4double oscStren = 0.0;
314 size_t numberOfOscillators = theTable->size();
315 size_t targetOscillator = 0;
316 G4double ionEnergy = 0.0*eV;
317
318 G4double ek = photonEnergy0/electron_mass_c2;
319 G4double ek2 = 2.*ek+1.0;
320 G4double eks = ek*ek;
321 G4double ek1 = eks-ek2-1.0;
322
323 G4double taumin = 1.0/ek2;
324 //This is meant to fix a possible (rare) floating point exception in the sampling of tau below,
325 //causing an infinite loop. The maximum of tau is not 1., but the closest double which can
326 //be represented (i.e. ~ 1. - 1e-16). Fix by Domenico Iuso
327 static G4double taumax = std::nexttoward(1.0,0.0);
328 if (fVerboseLevel > 3)
329 G4cout << "G4PenelopeComptonModel: maximum value of tau: 1 - " << 1.-taumax << G4endl;
330 //To here.
331 G4double a1 = G4Log(ek2);
332 G4double a2 = a1+2.0*ek*(1.0+ek)/(ek2*ek2);
333
334 G4double TST = 0;
335 G4double tau = 0.;
336
337 //If the incoming photon is above 5 MeV, the quicker approach based on the
338 //pure Klein-Nishina formula is used
339 if (photonEnergy0 > 5*MeV)
340 {
341 do{
342 do{
343 if ((a2*G4UniformRand()) < a1)
344 tau = std::pow(taumin,G4UniformRand());
345 else
346 tau = std::sqrt(1.0+G4UniformRand()*(taumin*taumin-1.0));
347 //rejection function
348 TST = (1.0+tau*(ek1+tau*(ek2+tau*eks)))/(eks*tau*(1.0+tau*tau));
349 }while (G4UniformRand()> TST);
350 if (tau > taumax) tau = taumax; //prevent FP exception causing infinite loop
351 epsilon=tau;
352 cosTheta = 1.0 - (1.0-tau)/(ek*tau);
353
354 //Target shell electrons
355 TST = fOscManager->GetTotalZ(material)*G4UniformRand();
356 targetOscillator = numberOfOscillators-1; //last level
357 S=0.0;
358 G4bool levelFound = false;
359 for (size_t j=0;j<numberOfOscillators && !levelFound; j++)
360 {
361 S += (*theTable)[j]->GetOscillatorStrength();
362 if (S > TST)
363 {
364 targetOscillator = j;
365 levelFound = true;
366 }
367 }
368 //check whether the level is valid
369 ionEnergy = (*theTable)[targetOscillator]->GetIonisationEnergy();
370 }while((epsilon*photonEnergy0-photonEnergy0+ionEnergy) >0);
371 }
372 else //photonEnergy0 < 5 MeV
373 {
374 //Incoherent scattering function for theta=PI
375 G4double s0=0.0;
376 G4double pzomc=0.0;
377 G4double rni=0.0;
378 G4double aux=0.0;
379 for (size_t i=0;i<numberOfOscillators;i++)
380 {
381 ionEnergy = (*theTable)[i]->GetIonisationEnergy();
382 if (photonEnergy0 > ionEnergy)
383 {
384 G4double aux2 = photonEnergy0*(photonEnergy0-ionEnergy)*2.0;
385 hartreeFunc = (*theTable)[i]->GetHartreeFactor();
386 oscStren = (*theTable)[i]->GetOscillatorStrength();
387 pzomc = hartreeFunc*(aux2-electron_mass_c2*ionEnergy)/
388 (electron_mass_c2*std::sqrt(2.0*aux2+ionEnergy*ionEnergy));
389 if (pzomc > 0)
390 rni = 1.0-0.5*G4Exp(0.5-(std::sqrt(0.5)+std::sqrt(2.0)*pzomc)*
391 (std::sqrt(0.5)+std::sqrt(2.0)*pzomc));
392 else
393 rni = 0.5*G4Exp(0.5-(std::sqrt(0.5)-std::sqrt(2.0)*pzomc)*
394 (std::sqrt(0.5)-std::sqrt(2.0)*pzomc));
395 s0 += oscStren*rni;
396 }
397 }
398 //Sampling tau
399 G4double cdt1 = 0.;
400 do
401 {
402 if ((G4UniformRand()*a2) < a1)
403 tau = std::pow(taumin,G4UniformRand());
404 else
405 tau = std::sqrt(1.0+G4UniformRand()*(taumin*taumin-1.0));
406 if (tau > taumax) tau = taumax; //prevent FP exception causing infinite loop
407 cdt1 = (1.0-tau)/(ek*tau);
408 //Incoherent scattering function
409 S = 0.;
410 for (size_t i=0;i<numberOfOscillators;i++)
411 {
412 ionEnergy = (*theTable)[i]->GetIonisationEnergy();
413 if (photonEnergy0 > ionEnergy) //sum only on excitable levels
414 {
415 aux = photonEnergy0*(photonEnergy0-ionEnergy)*cdt1;
416 hartreeFunc = (*theTable)[i]->GetHartreeFactor();
417 oscStren = (*theTable)[i]->GetOscillatorStrength();
418 pzomc = hartreeFunc*(aux-electron_mass_c2*ionEnergy)/
419 (electron_mass_c2*std::sqrt(2.0*aux+ionEnergy*ionEnergy));
420 if (pzomc > 0)
421 rn[i] = 1.0-0.5*G4Exp(0.5-(std::sqrt(0.5)+std::sqrt(2.0)*pzomc)*
422 (std::sqrt(0.5)+std::sqrt(2.0)*pzomc));
423 else
424 rn[i] = 0.5*G4Exp(0.5-(std::sqrt(0.5)-std::sqrt(2.0)*pzomc)*
425 (std::sqrt(0.5)-std::sqrt(2.0)*pzomc));
426 S += oscStren*rn[i];
427 pac[i] = S;
428 }
429 else
430 pac[i] = S-1e-6;
431 }
432 //Rejection function
433 TST = S*(1.0+tau*(ek1+tau*(ek2+tau*eks)))/(eks*tau*(1.0+tau*tau));
434 }while ((G4UniformRand()*s0) > TST);
435
436 cosTheta = 1.0 - cdt1;
437 G4double fpzmax=0.0,fpz=0.0;
438 G4double A=0.0;
439 //Target electron shell
440 do
441 {
442 do
443 {
444 TST = S*G4UniformRand();
445 targetOscillator = numberOfOscillators-1; //last level
446 G4bool levelFound = false;
447 for (size_t i=0;i<numberOfOscillators && !levelFound;i++)
448 {
449 if (pac[i]>TST)
450 {
451 targetOscillator = i;
452 levelFound = true;
453 }
454 }
455 A = G4UniformRand()*rn[targetOscillator];
456 hartreeFunc = (*theTable)[targetOscillator]->GetHartreeFactor();
457 oscStren = (*theTable)[targetOscillator]->GetOscillatorStrength();
458 if (A < 0.5)
459 pzomc = (std::sqrt(0.5)-std::sqrt(0.5-G4Log(2.0*A)))/
460 (std::sqrt(2.0)*hartreeFunc);
461 else
462 pzomc = (std::sqrt(0.5-G4Log(2.0-2.0*A))-std::sqrt(0.5))/
463 (std::sqrt(2.0)*hartreeFunc);
464 } while (pzomc < -1);
465
466 // F(EP) rejection
467 G4double XQC = 1.0+tau*(tau-2.0*cosTheta);
468 G4double AF = std::sqrt(XQC)*(1.0+tau*(tau-cosTheta)/XQC);
469 if (AF > 0)
470 fpzmax = 1.0+AF*0.2;
471 else
472 fpzmax = 1.0-AF*0.2;
473 fpz = 1.0+AF*std::max(std::min(pzomc,0.2),-0.2);
474 }while ((fpzmax*G4UniformRand())>fpz);
475
476 //Energy of the scattered photon
477 G4double T = pzomc*pzomc;
478 G4double b1 = 1.0-T*tau*tau;
479 G4double b2 = 1.0-T*tau*cosTheta;
480 if (pzomc > 0.0)
481 epsilon = (tau/b1)*(b2+std::sqrt(std::abs(b2*b2-b1*(1.0-T))));
482 else
483 epsilon = (tau/b1)*(b2-std::sqrt(std::abs(b2*b2-b1*(1.0-T))));
484 } //energy < 5 MeV
485
486 //Ok, the kinematics has been calculated.
487 G4double sinTheta = std::sqrt(1-cosTheta*cosTheta);
488 G4double phi = twopi * G4UniformRand() ;
489 G4double dirx = sinTheta * std::cos(phi);
490 G4double diry = sinTheta * std::sin(phi);
491 G4double dirz = cosTheta ;
492
493 // Update G4VParticleChange for the scattered photon
494 G4ThreeVector photonDirection1(dirx,diry,dirz);
495 photonDirection1.rotateUz(photonDirection0);
496 fParticleChange->ProposeMomentumDirection(photonDirection1) ;
497
498 G4double photonEnergy1 = epsilon * photonEnergy0;
499
500 if (photonEnergy1 > 0.)
502 else
503 {
506 }
507
508 //Create scattered electron
509 G4double diffEnergy = photonEnergy0*(1-epsilon);
510 ionEnergy = (*theTable)[targetOscillator]->GetIonisationEnergy();
511
512 G4double Q2 =
513 photonEnergy0*photonEnergy0+photonEnergy1*(photonEnergy1-2.0*photonEnergy0*cosTheta);
514 G4double cosThetaE = 0.; //scattering angle for the electron
515
516 if (Q2 > 1.0e-12)
517 cosThetaE = (photonEnergy0-photonEnergy1*cosTheta)/std::sqrt(Q2);
518 else
519 cosThetaE = 1.0;
520 G4double sinThetaE = std::sqrt(1-cosThetaE*cosThetaE);
521
522 //Now, try to handle fluorescence
523 //Notice: merged levels are indicated with Z=0 and flag=30
524 G4int shFlag = (*theTable)[targetOscillator]->GetShellFlag();
525 G4int Z = (G4int) (*theTable)[targetOscillator]->GetParentZ();
526
527 //initialize here, then check photons created by Atomic-Deexcitation, and the final state e-
528 G4double bindingEnergy = 0.*eV;
529 const G4AtomicShell* shell = 0;
530
531 //Real level
532 if (Z > 0 && shFlag<30)
533 {
534 shell = fTransitionManager->Shell(Z,shFlag-1);
535 bindingEnergy = shell->BindingEnergy();
536 }
537
538 G4double ionEnergyInPenelopeDatabase = ionEnergy;
539 //protection against energy non-conservation
540 ionEnergy = std::max(bindingEnergy,ionEnergyInPenelopeDatabase);
541
542 //subtract the excitation energy. If not emitted by fluorescence
543 //the ionization energy is deposited as local energy deposition
544 G4double eKineticEnergy = diffEnergy - ionEnergy;
545 G4double localEnergyDeposit = ionEnergy;
546 G4double energyInFluorescence = 0.; //testing purposes only
547 G4double energyInAuger = 0; //testing purposes
548
549 if (eKineticEnergy < 0)
550 {
551 //It means that there was some problem/mismatch between the two databases.
552 //Try to make it work
553 //In this case available Energy (diffEnergy) < ionEnergy
554 //Full residual energy is deposited locally
555 localEnergyDeposit = diffEnergy;
556 eKineticEnergy = 0.0;
557 }
558
559 //the local energy deposit is what remains: part of this may be spent for fluorescence.
560 //Notice: shell might be nullptr (invalid!) if shFlag=30. Must be protected
561 //Now, take care of fluorescence, if required
562 if (fAtomDeexcitation && shell)
563 {
564 G4int index = couple->GetIndex();
565 if (fAtomDeexcitation->CheckDeexcitationActiveRegion(index))
566 {
567 size_t nBefore = fvect->size();
568 fAtomDeexcitation->GenerateParticles(fvect,shell,Z,index);
569 size_t nAfter = fvect->size();
570
571 if (nAfter > nBefore) //actual production of fluorescence
572 {
573 for (size_t j=nBefore;j<nAfter;j++) //loop on products
574 {
575 G4double itsEnergy = ((*fvect)[j])->GetKineticEnergy();
576 if (itsEnergy < localEnergyDeposit) // valid secondary, generate it
577 {
578 localEnergyDeposit -= itsEnergy;
579 if (((*fvect)[j])->GetParticleDefinition() == G4Gamma::Definition())
580 energyInFluorescence += itsEnergy;
581 else if (((*fvect)[j])->GetParticleDefinition() ==
583 energyInAuger += itsEnergy;
584 }
585 else //invalid secondary: takes more than the available energy: delete it
586 {
587 delete (*fvect)[j];
588 (*fvect)[j] = nullptr;
589 }
590 }
591 }
592
593 }
594 }
595
596 //Always produce explicitly the electron
598
599 G4double xEl = sinThetaE * std::cos(phi+pi);
600 G4double yEl = sinThetaE * std::sin(phi+pi);
601 G4double zEl = cosThetaE;
602 G4ThreeVector eDirection(xEl,yEl,zEl); //electron direction
603 eDirection.rotateUz(photonDirection0);
605 eDirection,eKineticEnergy) ;
606 fvect->push_back(electron);
607
608 if (localEnergyDeposit < 0) //Should not be: issue a G4Exception (warning)
609 {
610 G4Exception("G4PenelopeComptonModel::SampleSecondaries()",
611 "em2099",JustWarning,"WARNING: Negative local energy deposit");
612 localEnergyDeposit=0.;
613 }
614 fParticleChange->ProposeLocalEnergyDeposit(localEnergyDeposit);
615
616 G4double electronEnergy = 0.;
617 if (electron)
618 electronEnergy = eKineticEnergy;
619 if (fVerboseLevel > 1)
620 {
621 G4cout << "-----------------------------------------------------------" << G4endl;
622 G4cout << "Energy balance from G4PenelopeCompton" << G4endl;
623 G4cout << "Incoming photon energy: " << photonEnergy0/keV << " keV" << G4endl;
624 G4cout << "-----------------------------------------------------------" << G4endl;
625 G4cout << "Scattered photon: " << photonEnergy1/keV << " keV" << G4endl;
626 G4cout << "Scattered electron " << electronEnergy/keV << " keV" << G4endl;
627 if (energyInFluorescence)
628 G4cout << "Fluorescence x-rays: " << energyInFluorescence/keV << " keV" << G4endl;
629 if (energyInAuger)
630 G4cout << "Auger electrons: " << energyInAuger/keV << " keV" << G4endl;
631 G4cout << "Local energy deposit " << localEnergyDeposit/keV << " keV" << G4endl;
632 G4cout << "Total final state: " << (photonEnergy1+electronEnergy+energyInFluorescence+
633 localEnergyDeposit+energyInAuger)/keV <<
634 " keV" << G4endl;
635 G4cout << "-----------------------------------------------------------" << G4endl;
636 }
637 if (fVerboseLevel > 0)
638 {
639 G4double energyDiff = std::fabs(photonEnergy1+
640 electronEnergy+energyInFluorescence+
641 localEnergyDeposit+energyInAuger-photonEnergy0);
642 if (energyDiff > 0.05*keV)
643 G4cout << "Warning from G4PenelopeCompton: problem with energy conservation: " <<
644 (photonEnergy1+electronEnergy+energyInFluorescence+energyInAuger+localEnergyDeposit)/keV <<
645 " keV (final) vs. " <<
646 photonEnergy0/keV << " keV (initial)" << G4endl;
647 }
648}
G4double epsilon(G4double density, G4double temperature)
G4double S(G4double temp)
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition G4Exp.hh:180
G4double G4Log(G4double x)
Definition G4Log.hh:227
@ fStopAndKill
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
const G4double A[17]
#define G4UniformRand()
Definition Randomize.hh:52
G4double BindingEnergy() const
G4AtomicShell * Shell(G4int Z, size_t shellIndex) const
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
static G4Electron * Definition()
Definition G4Electron.cc:45
static G4Electron * Electron()
Definition G4Electron.cc:91
static G4Gamma * Definition()
Definition G4Gamma.cc:43
const G4Material * GetMaterial() const
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(const G4ThreeVector &Pfinal)
G4double GetTotalZ(const G4Material *)
G4bool CheckDeexcitationActiveRegion(G4int coupleIndex)
void GenerateParticles(std::vector< G4DynamicParticle * > *secVect, const G4AtomicShell *, G4int Z, G4int coupleIndex)
void ProposeTrackStatus(G4TrackStatus status)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
G4double bindingEnergy(G4int A, G4int Z)

◆ SetVerbosityLevel()

void G4PenelopeComptonModel::SetVerbosityLevel ( G4int lev)
inline

Definition at line 96 of file G4PenelopeComptonModel.hh.

96{fVerboseLevel = lev;};

Member Data Documentation

◆ fParticle

const G4ParticleDefinition* G4PenelopeComptonModel::fParticle
protected

Definition at line 104 of file G4PenelopeComptonModel.hh.

Referenced by Initialise(), and InitialiseLocal().

◆ fParticleChange

G4ParticleChangeForGamma* G4PenelopeComptonModel::fParticleChange
protected

Definition at line 103 of file G4PenelopeComptonModel.hh.

Referenced by Initialise(), and SampleSecondaries().


The documentation for this class was generated from the following files: