Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4HadronPhysicsINCLXX.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//---------------------------------------------------------------------------
28//
29// ClassName: G4HadronPhysicsINCLXX
30//
31// Author: 2011 P. Kaitaniemi
32//
33// Modified:
34// 11.11.2022 A.Ribon: Extended to light hypernuclei and anti-hypernuclei projectiles
35// 07.05.2020 A.Ribon: Use eventually QGSP for hyperons (and anti-hyperons)
36// at high energies
37// 05.05.2020 A.Ribon: Use eventually QGSP for antibaryons at high energies
38// 22.05.2014 D. Mancusi: Extend INCL++ to 20 GeV
39// 19.03.2013 A.Ribon: Replace LEP with FTFP and BERT
40// 08.03.2013 D. Mancusi: Fix a problem with overlapping model ranges
41// 01.03.2013 D. Mancusi: Rename to G4HadronPhysicsINCLXX and introduce
42// parameters for FTFP and NeutronHP
43// 31.10.2012 A.Ribon: Use G4MiscBuilder
44// 23.03.2012 D. Mancusi: Extended INCL++ to incident heavy ions up to 16O
45// 27.11.2011 P.Kaitaniemi: Created physics list for INCL++ using QGSP_INCL_ABLA as a template
46//
47//----------------------------------------------------------------------------
48//
49#include <iomanip>
50
52
53#include "globals.hh"
54#include "G4ios.hh"
55#include "G4SystemOfUnits.hh"
57#include "G4ParticleTable.hh"
58
59#include "G4PionBuilder.hh"
60#include "G4KaonBuilder.hh"
61#include "G4QGSPPionBuilder.hh"
62#include "G4FTFPPionBuilder.hh"
63#include "G4QGSPKaonBuilder.hh"
64#include "G4FTFPKaonBuilder.hh"
67
68#include "G4ProtonBuilder.hh"
72
73#include "G4NeutronBuilder.hh"
78
80#include "G4NeutronCaptureXS.hh"
83#include "G4LFission.hh"
84
85#include "G4PhysListUtil.hh"
86#include "G4HadParticles.hh"
88#include "G4HadronicBuilder.hh"
89
90// factory
92//
94
100
101G4HadronPhysicsINCLXX::G4HadronPhysicsINCLXX(const G4String& name, const G4bool quasiElastic, const G4bool neutronHP, const G4bool ftfp)
102 : G4HadronPhysicsFTFP_BERT(name, quasiElastic),
103 withNeutronHP(neutronHP),
104 withFTFP(ftfp)
105{
106 QuasiElastic = withFTFP ? false : true;
107 minBERT_neutron = withNeutronHP ? 19.9*MeV : 0.0;
108}
109
111{
113 G4bool useFactorXS = param->ApplyFactorXS();
114 //General schema:
115 // 1) Create a builder
116 // 2) Call AddBuilder
117 // 3) Configure the builder, possibly with sub-builders
118 // 4) Call builder->Build()
119 auto neu = new G4NeutronBuilder( withNeutronHP );
120 AddBuilder(neu);
121 G4PhysicsBuilderInterface* string = nullptr;
122 if(withFTFP) {
124 } else {
126 }
127 string->SetMinEnergy(15.*GeV);
128 AddBuilder(string);
129 neu->RegisterMe(string);
130
131 auto inclxxn = new G4INCLXXNeutronBuilder;
132 inclxxn->SetMaxEnergy(20.*GeV);
133 AddBuilder(inclxxn);
134 neu->RegisterMe(inclxxn);
135
136 if(withNeutronHP) {
137 inclxxn->UsePreCompound(false);
138 inclxxn->SetMinEnergy(minBERT_neutron);
139 auto hpn = new G4NeutronPHPBuilder;
140 AddBuilder(hpn);
141 neu->RegisterMe(hpn);
142 } else {
143 inclxxn->UsePreCompound(true);
144 inclxxn->SetMinPreCompoundEnergy(0.0*MeV);
145 inclxxn->SetMaxPreCompoundEnergy(2.0*MeV);
146 inclxxn->SetMinEnergy(1.0*MeV);
147 }
148
149 neu->Build();
150
151 const G4ParticleDefinition* neutron = G4Neutron::Neutron();
153 if(nullptr != inel) {
154 if( useFactorXS ) inel->MultiplyCrossSectionBy( param->XSFactorNucleonInelastic() );
155 }
157 if (nullptr != capture) {
158 G4NeutronRadCapture* theNeutronRadCapture = new G4NeutronRadCapture();
159 theNeutronRadCapture->SetMinEnergy( minBERT_neutron );
160 capture->RegisterMe( theNeutronRadCapture );
161 }
163 if (nullptr != fission) {
164 G4LFission* theNeutronLEPFission = new G4LFission();
165 theNeutronLEPFission->SetMinEnergy( minBERT_neutron );
166 theNeutronLEPFission->SetMaxEnergy( G4HadronicParameters::Instance()->GetMaxEnergy() );
167 fission->RegisterMe( theNeutronLEPFission );
168 }
169}
170
172{
174 G4bool useFactorXS = param->ApplyFactorXS();
175
176 auto pro =new G4ProtonBuilder;
177 AddBuilder(pro);
178 G4PhysicsBuilderInterface* string = nullptr;
179 if(withFTFP) {
180 string = new G4FTFPProtonBuilder(QuasiElastic);
181 } else {
182 string = new G4QGSPProtonBuilder(QuasiElastic);
183 }
184 string->SetMinEnergy(15.*GeV);
185 AddBuilder(string);
186 pro->RegisterMe(string);
187
188 auto inclxxp = new G4INCLXXProtonBuilder;
189 AddBuilder(inclxxp);
190 inclxxp->SetMinEnergy(1.0*MeV);
191 inclxxp->SetMaxEnergy(20.0*GeV);
192 pro->RegisterMe(inclxxp);
193 pro->Build();
194
195 const G4ParticleDefinition* proton = G4Proton::Proton();
197 if(nullptr != inel) {
198 if( useFactorXS ) inel->MultiplyCrossSectionBy( param->XSFactorNucleonInelastic() );
199 }
200}
201
203{
205 G4bool useFactorXS = param->ApplyFactorXS();
206
207 auto pi = new G4PionBuilder;
208 AddBuilder(pi);
209 G4PhysicsBuilderInterface* string = nullptr;
210 if(withFTFP) {
211 string = new G4FTFPPionBuilder(QuasiElastic);
212 } else {
213 string = new G4QGSPPionBuilder(QuasiElastic);
214 }
215 string->SetMinEnergy(15.*GeV);
216 AddBuilder(string);
217 pi->RegisterMe(string);
218
219 auto inclxx = new G4INCLXXPionBuilder;
220 inclxx->SetMinEnergy(0.0*GeV);
221 inclxx->SetMaxEnergy(20.*GeV);
222 AddBuilder(inclxx);
223 pi->RegisterMe(inclxx);
224
225 pi->Build();
226
227 if( useFactorXS ) {
230 if(nullptr != inel) {
232 }
233 pion = G4PionMinus::PionMinus();
235 if(nullptr != inel) {
237 }
238 }
239}
240
242{
244 G4bool useFactorXS = param->ApplyFactorXS();
245
246 auto k = new G4KaonBuilder;
247 AddBuilder(k);
248 G4PhysicsBuilderInterface* string = nullptr;
249 if(withFTFP) {
250 string = new G4FTFPKaonBuilder(QuasiElastic);
251 } else {
252 string = new G4QGSPKaonBuilder(QuasiElastic);
253 }
254 string->SetMinEnergy(14.*GeV);
255 AddBuilder(string);
256 k->RegisterMe(string);
257
258 auto bert = new G4BertiniKaonBuilder;
259 bert->SetMinEnergy(0.0*GeV);
260 bert->SetMaxEnergy(15.0*GeV);
261 AddBuilder(bert);
262 k->RegisterMe(bert);
263
264 k->Build();
265
266 if( useFactorXS ) {
268 for( auto & pdg : G4HadParticles::GetKaons() ) {
269 auto part = table->FindParticle( pdg );
270 if ( part == nullptr ) { continue; }
272 if(nullptr != inel) {
274 }
275 }
276 }
277}
278
280{
282
283 // high energy particles
284 if( param->GetMaxEnergy() > param->EnergyThresholdForHeavyHadrons() ) {
285
286 // anti light ions
288
289 if ( param->EnableHyperNuclei() ) {
290 // INCLXX is currently capable of handling light hypernuclei projectiles,
291 // but not light anti-hypernuclei projectiles, therefore FTFP must be used
292 // for the latter.
293 // Note that the QGSP string model cannot currently handle nuclear projectiles
294 // of any kind, so only the FTFP string model can be used together with INCLXX
295 // for the simulation of nuclear interactions light hypernuclei.
298 }
299
300 if(withFTFP) {
301 // hyperons
303
304 // b-, c- baryons and mesons
305 if( param->EnableBCParticles() ) {
307 }
308 } else {
309 // hyperons
311
312 // b-, c- baryons and mesons
313 if( param->EnableBCParticles() ) {
315 }
316 }
317 }
318}
319
322
331
#define G4_DECLARE_PHYSCONSTR_FACTORY(physics_constructor)
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
virtual void SetMinEnergy(G4double aM) final override
static const std::vector< G4int > & GetKaons()
G4HadronPhysicsINCLXX(G4int verbose=1)
static void BuildBCHadronsFTFP_BERT()
static void BuildHyperonsFTFP_BERT()
static void BuildHyperonsQGSP_FTFP_BERT(G4bool quasiElastic)
static void BuildHyperAntiNucleiFTFP_BERT()
static void BuildBCHadronsQGSP_FTFP_BERT(G4bool quasiElastic)
static void BuildHyperNucleiFTFP_INCLXX()
static void BuildAntiLightIonsINCLXX()
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)
static G4HadronicParameters * Instance()
void SetVerboseLevel(const G4int val)
G4double EnergyThresholdForHeavyHadrons() const
G4double XSFactorHadronInelastic() const
G4double XSFactorPionInelastic() const
G4double XSFactorNucleonInelastic() const
void MultiplyCrossSectionBy(G4double factor)
void RegisterMe(G4HadronicInteraction *a)
virtual void SetMaxEnergy(G4double aM) final override
virtual void SetMinEnergy(G4double aM) final override
static G4Neutron * Neutron()
Definition G4Neutron.cc:101
G4ParticleDefinition * FindParticle(G4int PDGEncoding)
static G4ParticleTable * GetParticleTable()
static G4HadronicProcess * FindInelasticProcess(const G4ParticleDefinition *)
static G4HadronicProcess * FindCaptureProcess(const G4ParticleDefinition *)
static G4HadronicProcess * FindFissionProcess(const G4ParticleDefinition *)
static G4PionMinus * PionMinus()
static G4PionPlus * PionPlus()
Definition G4PionPlus.cc:93
static G4Proton * Proton()
Definition G4Proton.cc:90
void AddBuilder(G4PhysicsBuilderInterface *bld)
G4bool IsMasterThread()