Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4HadronicBuilder Class Reference

#include <G4HadronicBuilder.hh>

Static Public Member Functions

static void BuildElastic (const std::vector< G4int > &particleList)
 
static void BuildHyperonsFTFP_BERT ()
 
static void BuildHyperonsFTFQGSP_BERT ()
 
static void BuildHyperonsQGSP_FTFP_BERT (G4bool quasiElastic)
 
static void BuildKaonsFTFP_BERT ()
 
static void BuildKaonsFTFQGSP_BERT ()
 
static void BuildKaonsQGSP_FTFP_BERT (G4bool quasiElastic)
 
static void BuildAntiLightIonsFTFP ()
 
static void BuildAntiLightIonsINCLXX ()
 
static void BuildBCHadronsFTFP_BERT ()
 
static void BuildBCHadronsFTFQGSP_BERT ()
 
static void BuildBCHadronsQGSP_FTFP_BERT (G4bool quasiElastic)
 
static void BuildDecayTableForBCHadrons ()
 
static void BuildHyperNucleiFTFP_BERT ()
 
static void BuildHyperAntiNucleiFTFP_BERT ()
 
static void BuildHyperNucleiFTFP_INCLXX ()
 
static void BuildFTFP_INCLXX (const std::vector< G4int > &partList, const G4String &xsName)
 

Detailed Description

Definition at line 43 of file G4HadronicBuilder.hh.

Member Function Documentation

◆ BuildAntiLightIonsFTFP()

void G4HadronicBuilder::BuildAntiLightIonsFTFP ( )
static

◆ BuildAntiLightIonsINCLXX()

void G4HadronicBuilder::BuildAntiLightIonsINCLXX ( )
static

Definition at line 317 of file G4HadronicBuilder.cc.

317 {
318 BuildINCLXX(G4HadParticles::GetLightAntiIons(), false, "AntiAGlauber");
319}

Referenced by G4HadronPhysicsINCLXX::Others().

◆ BuildBCHadronsFTFP_BERT()

void G4HadronicBuilder::BuildBCHadronsFTFP_BERT ( )
static

Definition at line 321 of file G4HadronicBuilder.cc.

321 {
322 if( G4HadronicParameters::Instance()->EnableBCParticles() ) {
323 // Bertini is not applicable for charm and bottom hadrons, therefore FTFP is used
324 // down to zero kinetic energy (but at very low energies, a dummy model is used
325 // that returns the projectile heavy hadron in the final state).
326 BuildFTFP_BERT(G4HadParticles::GetBCHadrons(), false, "Glauber-Gribov");
328 }
329}
static const std::vector< G4int > & GetBCHadrons()
static void BuildDecayTableForBCHadrons()
static G4HadronicParameters * Instance()

Referenced by G4HadronInelasticQBBC::ConstructProcess(), G4HadronInelasticQBBC_ABLA::ConstructProcess(), G4HadronPhysicsFTFP_BERT::Others(), and G4HadronPhysicsINCLXX::Others().

◆ BuildBCHadronsFTFQGSP_BERT()

void G4HadronicBuilder::BuildBCHadronsFTFQGSP_BERT ( )
static

Definition at line 331 of file G4HadronicBuilder.cc.

331 {
332 if( G4HadronicParameters::Instance()->EnableBCParticles() ) {
333 // Bertini is not applicable for charm and bottom hadrons, therefore FTFP is used
334 // down to zero kinetic energy (but at very low energies, a dummy model is used
335 // that returns the projectile heavy hadron in the final state).
336 BuildFTFQGSP_BERT(G4HadParticles::GetBCHadrons(), false, "Glauber-Gribov");
338 }
339}

Referenced by G4HadronPhysicsFTFQGSP_BERT::ConstructProcess().

◆ BuildBCHadronsQGSP_FTFP_BERT()

void G4HadronicBuilder::BuildBCHadronsQGSP_FTFP_BERT ( G4bool quasiElastic)
static

Definition at line 341 of file G4HadronicBuilder.cc.

341 {
342 if( G4HadronicParameters::Instance()->EnableBCParticles() ) {
343 // Bertini is not applicable for charm and bottom hadrons, therefore FTFP is used
344 // down to zero kinetic energy (but at very low energies, a dummy model is used
345 // that returns the projectile heavy hadron in the final state).
346 // QGSP is used at high energies in all cases.
347 BuildQGSP_FTFP_BERT(G4HadParticles::GetBCHadrons(), false, qElastic, "Glauber-Gribov");
349 }
350}

Referenced by G4HadronPhysicsINCLXX::Others(), G4HadronPhysicsQGSP_BERT::Others(), and G4HadronPhysicsQGSP_BIC::Others().

◆ BuildDecayTableForBCHadrons()

void G4HadronicBuilder::BuildDecayTableForBCHadrons ( )
static

Definition at line 352 of file G4HadronicBuilder.cc.

352 {
353 // Geant4 does not define the decay of most of charmed and bottom hadrons.
354 // The reason is that most of these heavy hadrons have many different
355 // decay channels, with a complex dynamics, quite different from the flat
356 // phase space kinematical treatment used in Geant4 for most of hadronic decays.
357 // High-energy experiments usually use dedicated Monte Carlo Event Generators
358 // for the decays of charmed and bottom hadrons; therefore, these heavy
359 // hadrons, which are passed to Geant4 as primary tracks, have pre-assigned
360 // decays. Moreover, no charmed or bottom secondary hadrons were created
361 // in Geant4 hadronic interactions before Geant4 10.7.
362 // With the extension of Geant4 hadronic interactions to charmed and bottom
363 // hadrons, in version Geant4 10.7, we do need to define decays in Geant4
364 // for these heavy hadrons, for two reasons:
365 // 1. For testing purposes, unless we pre-assign decays of heavy hadrons
366 // (as the HEP experiments normally do by using MC Event Generators);
367 // 2. To avoid crashes (due to missing decay channels) whenever charmed or
368 // bottom secondary hadrons are produced by Geant4 hadronic interactions,
369 // even with ordinary (i.e. not heavy) hadron projectiles, because in
370 // this case we cannot (easily!) pre-assign decays to them.
371 // Given that 1. is just a convenience for testing, and 2. happens rather
372 // rarely in practice - because very few primary energetic (i.e. boosted)
373 // heavy hadrons fly enough to reach the beam pipe or the tracker and
374 // having an inelastic interaction there, and the very low probability
375 // to create a heavy hadrons from the string fragmentation in ordinary
376 // (i.e. not heavy) hadronic interactions - there is no need in practice
377 // to define accurately the decays of heavy hadrons in Geant4.
378 // So, for our practical purposes, it is enough to define very simple,
379 // "dummy" decays of charmed and bottom hadrons.
380 // Here we use a single, fully hadronic channel, with 2 or 3 or 4
381 // daughters, for each of these heavy hadrons, assigning to this single
382 // decay channel a 100% branching ratio, although in reality such a
383 // channel is one between hundreds of possible ones (and therefore its
384 // real branching ratio is typical of a few per-cent); moreover, we treat
385 // the decay without any dynamics, i.e. with a flat phase space kinematical
386 // treatment.
387 // Note that some of the charmed and bottom hadrons such as SigmaC++,
388 // SigmaC+, SigmaC0, SigmaB+, SigmaB0 and SigmaB- have one dominant
389 // decay channel (to LambdaC/B + Pion) which is already defined in Geant4.
390 // This is not the case for EtaC, JPsi and Upsilon, whose decays need to
391 // be defined here (although they decay so quickly that their hadronic
392 // interactions can be neglected, as we do for Pi0 and Sigma0).
393 // Note that our definition of the decay tables for these heavy hadrons
394 // do not interfere with the pre-assign decays of primary charmed and
395 // bottom tracks made by the HEP experiments. In fact, pre-assign decays
396 // have priority over (i.e. override) decay tables.
397 static G4bool isFirstCall = true;
398 if ( ! isFirstCall ) return;
399 isFirstCall = false;
401 for ( auto & pdg : G4HadParticles::GetBCHadrons() ) {
402 auto part = particleTable->FindParticle( pdg );
403 if ( part == nullptr ) {
404 G4cout << "G4HadronicBuilder::BuildDecayTableForBCHadrons : ERROR ! particlePDG="
405 << pdg << " is not defined !" << G4endl;
406 continue;
407 }
408 if ( part->GetDecayTable() ) {
409 G4cout << "G4HadronicBuilder::BuildDecayTableForBCHadrons : WARNING ! particlePDG="
410 << pdg << " has already a decay table defined !" << G4endl;
411 continue;
412 }
413 G4DecayTable* decayTable = new G4DecayTable;
414 const G4int numberDecayChannels = 1;
415 G4VDecayChannel** mode = new G4VDecayChannel*[ numberDecayChannels ];
416 for ( G4int i = 0; i < numberDecayChannels; ++i ) mode[i] = nullptr;
417 switch ( pdg ) {
418 // Charmed mesons
419 case 411 : // D+
420 mode[0] = new G4PhaseSpaceDecayChannel( "D+", 1.0, 3, "kaon-", "pi+", "pi+" );
421 break;
422 case -411 : // D-
423 mode[0] = new G4PhaseSpaceDecayChannel( "D-", 1.0, 3, "kaon+", "pi-", "pi-" );
424 break;
425 case 421 : // D0
426 mode[0] = new G4PhaseSpaceDecayChannel( "D0", 1.0, 3, "kaon-", "pi+", "pi0" );
427 break;
428 case -421 : // anti_D0
429 mode[0] = new G4PhaseSpaceDecayChannel( "anti_D0", 1.0, 3, "kaon+", "pi-", "pi0" );
430 break;
431 case 431 : // Ds+
432 mode[0] = new G4PhaseSpaceDecayChannel( "Ds+", 1.0, 3, "kaon+", "kaon-", "pi+" );
433 break;
434 case -431 : // Ds-
435 mode[0] = new G4PhaseSpaceDecayChannel( "Ds-", 1.0, 3, "kaon-", "kaon+", "pi-" );
436 break;
437 // Bottom mesons
438 case 521 : // B+
439 mode[0] = new G4PhaseSpaceDecayChannel( "B+", 1.0, 3, "anti_D0", "pi+", "pi0" );
440 break;
441 case -521 : // B-
442 mode[0] = new G4PhaseSpaceDecayChannel( "B-", 1.0, 3, "D0", "pi-", "pi0" );
443 break;
444 case 511 : // B0
445 mode[0] = new G4PhaseSpaceDecayChannel( "B0", 1.0, 3, "D-", "pi+", "pi0" );
446 break;
447 case -511 : // anti_B0
448 mode[0] = new G4PhaseSpaceDecayChannel( "anti_B0", 1.0, 3, "D+", "pi-", "pi0" );
449 break;
450 case 531 : // Bs0
451 mode[0] = new G4PhaseSpaceDecayChannel( "Bs0", 1.0, 3, "Ds-", "pi+", "pi0" );
452 break;
453 case -531 : // anti_Bs0
454 mode[0] = new G4PhaseSpaceDecayChannel( "anti_Bs0", 1.0, 3, "Ds+", "pi-", "pi0" );
455 break;
456 case 541 : // Bc+
457 mode[0] = new G4PhaseSpaceDecayChannel( "Bc+", 1.0, 2, "J/psi", "pi+" );
458 break;
459 case -541 : // Bc-
460 mode[0] = new G4PhaseSpaceDecayChannel( "Bc-", 1.0, 2, "J/psi", "pi-" );
461 break;
462 // Charmed baryons (and anti-baryons)
463 case 4122 : // lambda_c+
464 mode[0] = new G4PhaseSpaceDecayChannel( "lambda_c+", 1.0, 3, "proton", "kaon-", "pi+" );
465 break;
466 case -4122 : // anti_lambda_c+
467 mode[0] = new G4PhaseSpaceDecayChannel( "anti_lambda_c+", 1.0, 3, "anti_proton", "kaon+", "pi-" );
468 break;
469 case 4232 : // xi_c+
470 mode[0] = new G4PhaseSpaceDecayChannel( "xi_c+", 1.0, 3, "sigma+", "kaon-", "pi+" );
471 break;
472 case -4232 : // anti_xi_c+
473 mode[0] = new G4PhaseSpaceDecayChannel( "anti_xi_c+", 1.0, 3, "anti_sigma+", "kaon+", "pi-" );
474 break;
475 case 4132 : // xi_c0
476 mode[0] = new G4PhaseSpaceDecayChannel( "xi_c0", 1.0, 3, "lambda", "kaon-", "pi+" );
477 break;
478 case -4132 : // anti_xi_c0
479 mode[0] = new G4PhaseSpaceDecayChannel( "anti_xi_c0", 1.0, 3, "anti_lambda", "kaon+", "pi-" );
480 break;
481 case 4332 : // omega_c0
482 mode[0] = new G4PhaseSpaceDecayChannel( "omega_c0", 1.0, 3, "xi0", "kaon-", "pi+" );
483 break;
484 case -4332 : // anti_omega_c0
485 mode[0] = new G4PhaseSpaceDecayChannel( "anti_omega_c0", 1.0, 3, "anti_xi0", "kaon+", "pi-" );
486 break;
487 // Bottom baryons (and anti-baryons)
488 case 5122 : // lambda_b
489 mode[0] = new G4PhaseSpaceDecayChannel( "lambda_b", 1.0, 4, "lambda_c+", "pi+", "pi-", "pi-" );
490 break;
491 case -5122 : // anti_lambda_b
492 mode[0] = new G4PhaseSpaceDecayChannel( "anti_lambda_b", 1.0, 4, "anti_lambda_c+", "pi-", "pi+", "pi+" );
493 break;
494 case 5232 : // xi_b0
495 mode[0] = new G4PhaseSpaceDecayChannel( "xi_b0", 1.0, 3, "lambda_c+", "kaon-", "pi0" );
496 break;
497 case -5232 : // anti_xi_b0
498 mode[0] = new G4PhaseSpaceDecayChannel( "anti_xi_b0", 1.0, 3, "anti_lambda_c+", "kaon+", "pi0" );
499 break;
500 case 5132 : // xi_b-
501 mode[0] = new G4PhaseSpaceDecayChannel( "xi_b-", 1.0, 3, "lambda_c+", "kaon-", "pi-" );
502 break;
503 case -5132 : // anti_xi_b-
504 mode[0] = new G4PhaseSpaceDecayChannel( "anti_xi_b-", 1.0, 3, "anti_lambda_c+", "kaon+", "pi+" );
505 break;
506 case 5332 : // omega_b-
507 mode[0] = new G4PhaseSpaceDecayChannel( "omega_b-", 1.0, 3, "xi_c+", "kaon-", "pi-" );
508 break;
509 case -5332 : // anti_omega_b-
510 mode[0] = new G4PhaseSpaceDecayChannel( "anti_omega_b-", 1.0, 3, "anti_xi_c+", "kaon+", "pi+" );
511 break;
512 default :
513 G4cout << "G4HadronicBuilder::BuildDecayTableForBCHadrons : UNKNOWN particlePDG=" << pdg << G4endl;
514 } // End of the switch
515
516 for ( G4int index = 0; index < numberDecayChannels; ++index ) decayTable->Insert( mode[index] );
517 delete [] mode;
518 part->SetDecayTable( decayTable );
519 } // End of the for loop over heavy hadrons
520 // Add now the decay for etac, JPsi and Upsilon because these can be produced as
521 // secondaries in hadronic interactions, while they are not part of the heavy
522 // hadrons included in G4HadParticles::GetBCHadrons() because they live too shortly
523 // and therefore their hadronic interactions can be neglected (as we do for pi0 and sigma0).
524 if ( ! G4Etac::Definition()->GetDecayTable() ) {
525 G4DecayTable* decayTable = new G4DecayTable;
526 const G4int numberDecayChannels = 1;
527 G4VDecayChannel** mode = new G4VDecayChannel*[ numberDecayChannels ];
528 for ( G4int i = 0; i < numberDecayChannels; ++i ) mode[i] = nullptr;
529 mode[0] = new G4PhaseSpaceDecayChannel( "etac", 1.0, 3, "eta", "pi+", "pi-" );
530 for ( G4int index = 0; index < numberDecayChannels; ++index ) decayTable->Insert( mode[index] );
531 delete [] mode;
532 G4Etac::Definition()->SetDecayTable( decayTable );
533 }
534 if ( ! G4JPsi::Definition()->GetDecayTable() ) {
535 G4DecayTable* decayTable = new G4DecayTable;
536 const G4int numberDecayChannels = 1;
537 G4VDecayChannel** mode = new G4VDecayChannel*[ numberDecayChannels ];
538 for ( G4int i = 0; i < numberDecayChannels; ++i ) mode[i] = nullptr;
539 mode[0] = new G4PhaseSpaceDecayChannel( "J/psi", 1.0, 3, "pi0", "pi+", "pi-" );
540 for ( G4int index = 0; index < numberDecayChannels; ++index ) decayTable->Insert( mode[index] );
541 delete [] mode;
542 G4JPsi::Definition()->SetDecayTable( decayTable );
543 }
544 if ( ! G4Upsilon::Definition()->GetDecayTable() ) {
545 G4DecayTable* decayTable = new G4DecayTable;
546 const G4int numberDecayChannels = 1;
547 G4VDecayChannel** mode = new G4VDecayChannel*[ numberDecayChannels ];
548 for ( G4int i = 0; i < numberDecayChannels; ++i ) mode[i] = nullptr;
549 mode[0] = new G4PhaseSpaceDecayChannel( "Upsilon", 1.0, 3, "eta_prime", "pi+", "pi-" );
550 for ( G4int index = 0; index < numberDecayChannels; ++index ) decayTable->Insert( mode[index] );
551 delete [] mode;
552 G4Upsilon::Definition()->SetDecayTable( decayTable );
553 }
554}
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
void Insert(G4VDecayChannel *aChannel)
static G4Etac * Definition()
Definition G4Etac.cc:44
static G4JPsi * Definition()
Definition G4JPsi.cc:42
void SetDecayTable(G4DecayTable *aDecayTable)
G4ParticleDefinition * FindParticle(G4int PDGEncoding)
static G4ParticleTable * GetParticleTable()
static G4Upsilon * Definition()
Definition G4Upsilon.cc:41

Referenced by BuildBCHadronsFTFP_BERT(), BuildBCHadronsFTFQGSP_BERT(), and BuildBCHadronsQGSP_FTFP_BERT().

◆ BuildElastic()

void G4HadronicBuilder::BuildElastic ( const std::vector< G4int > & particleList)
static

Definition at line 250 of file G4HadronicBuilder.cc.

250 {
251
254
255 auto xsel = G4HadProcesses::ElasticXS("Glauber-Gribov");
256
257 auto elModel = new G4HadronElastic();
258 elModel->SetMaxEnergy( param->GetMaxEnergy() );
259
261 for( auto & pdg : partList ) {
262
263 auto part = table->FindParticle( pdg );
264 if ( part == nullptr ) { continue; }
265
266 auto hade = new G4HadronElasticProcess();
267 hade->AddDataSet( xsel );
268 hade->RegisterMe( elModel );
269 if( param->ApplyFactorXS() ) hade->MultiplyCrossSectionBy( param->XSFactorHadronElastic() );
270 ph->RegisterProcess(hade, part);
271 }
272}
static G4CrossSectionElastic * ElasticXS(const G4String &componentName)
G4double XSFactorHadronElastic() const
G4bool RegisterProcess(G4VProcess *process, G4ParticleDefinition *particle)
static G4PhysicsListHelper * GetPhysicsListHelper()

Referenced by G4HadronDElasticPhysics::ConstructProcess(), G4HadronElasticPhysics::ConstructProcess(), and G4HadronHElasticPhysics::ConstructProcess().

◆ BuildFTFP_INCLXX()

void G4HadronicBuilder::BuildFTFP_INCLXX ( const std::vector< G4int > & partList,
const G4String & xsName )
static

Definition at line 583 of file G4HadronicBuilder.cc.

583 {
586 auto theTheoFSModel = new G4TheoFSGenerator( "FTFP" );
587 auto theStringModel = new G4FTFModel;
588 theStringModel->SetFragmentationModel( new G4ExcitedStringDecay );
589 theTheoFSModel->SetHighEnergyGenerator( theStringModel );
590 theTheoFSModel->SetTransport( new G4GeneratorPrecompoundInterface );
591 theTheoFSModel->SetMaxEnergy( param->GetMaxEnergy() );
592 theTheoFSModel->SetMinEnergy( 15.0*CLHEP::GeV );
593 G4VPreCompoundModel* thePrecoModel = new G4PreCompoundModel;
594 thePrecoModel->SetMinEnergy( 0.0 );
595 thePrecoModel->SetMaxEnergy( 2.0*CLHEP::MeV );
596 G4INCLXXInterface* theINCLXXModel = new G4INCLXXInterface( thePrecoModel );
597 theINCLXXModel->SetMinEnergy( 1.0*CLHEP::MeV );
598 theINCLXXModel->SetMaxEnergy( 20.0*CLHEP::GeV );
599 auto xsinel = G4HadProcesses::InelasticXS( xsName );
601 for ( auto & pdg : partList ) {
602 auto part = table->FindParticle( pdg );
603 if ( part == nullptr ) continue;
604 auto hadi = new G4HadronInelasticProcess( part->GetParticleName()+"Inelastic", part );
605 hadi->AddDataSet( xsinel );
606 hadi->RegisterMe( theTheoFSModel );
607 hadi->RegisterMe( theINCLXXModel );
608 if ( param->ApplyFactorXS() ) hadi->MultiplyCrossSectionBy( param->XSFactorHadronInelastic() );
609 ph->RegisterProcess( hadi, part );
610 }
611}
static G4CrossSectionInelastic * InelasticXS(const G4String &componentName)
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)
G4double XSFactorHadronInelastic() const
INCL++ intra-nuclear cascade.
void SetFragmentationModel(G4VStringFragmentation *aModel)

Referenced by BuildHyperNucleiFTFP_INCLXX().

◆ BuildHyperAntiNucleiFTFP_BERT()

void G4HadronicBuilder::BuildHyperAntiNucleiFTFP_BERT ( )
static

Definition at line 568 of file G4HadronicBuilder.cc.

568 {
569 if ( G4HadronicParameters::Instance()->EnableHyperNuclei() ) {
570 // FTFP can be used down to zero kinetic energy.
571 BuildFTFP_BERT( G4HadParticles::GetHyperAntiNuclei(), false, "AntiAGlauber" );
572 }
573}
static const std::vector< G4int > & GetHyperAntiNuclei()

Referenced by G4HadronPhysicsFTFP_BERT::Others(), and G4HadronPhysicsINCLXX::Others().

◆ BuildHyperNucleiFTFP_BERT()

void G4HadronicBuilder::BuildHyperNucleiFTFP_BERT ( )
static

Definition at line 557 of file G4HadronicBuilder.cc.

557 {
558 if ( G4HadronicParameters::Instance()->EnableHyperNuclei() ) {
559 // Bertini intra-nuclear cascade model is currently not applicable for light
560 // hypernuclei, therefore FTFP is used down to zero kinetic energy (but at
561 // very low energies, a dummy model is used that simply returns the projectile
562 // hypernucleus in the final state).
563 BuildFTFP_BERT( G4HadParticles::GetHyperNuclei(), false, "Glauber-Gribov" );
564 }
565}
static const std::vector< G4int > & GetHyperNuclei()

Referenced by G4HadronPhysicsFTFP_BERT::Others().

◆ BuildHyperNucleiFTFP_INCLXX()

void G4HadronicBuilder::BuildHyperNucleiFTFP_INCLXX ( )
static

Definition at line 576 of file G4HadronicBuilder.cc.

576 {
577 if ( G4HadronicParameters::Instance()->EnableHyperNuclei() ) {
579 }
580}
static void BuildFTFP_INCLXX(const std::vector< G4int > &partList, const G4String &xsName)

Referenced by G4HadronPhysicsINCLXX::Others().

◆ BuildHyperonsFTFP_BERT()

void G4HadronicBuilder::BuildHyperonsFTFP_BERT ( )
static

Definition at line 274 of file G4HadronicBuilder.cc.

274 {
275 // For hyperons, Bertini is used at low energies;
276 // for anti-hyperons, FTFP can be used down to zero kinetic energy.
277 BuildFTFP_BERT(G4HadParticles::GetHyperons(), true, "Glauber-Gribov");
278 BuildFTFP_BERT(G4HadParticles::GetAntiHyperons(), false, "Glauber-Gribov");
279}
static const std::vector< G4int > & GetAntiHyperons()
static const std::vector< G4int > & GetHyperons()

Referenced by G4HadronInelasticQBBC::ConstructProcess(), G4HadronInelasticQBBC_ABLA::ConstructProcess(), G4HadronPhysicsFTFP_BERT::Others(), and G4HadronPhysicsINCLXX::Others().

◆ BuildHyperonsFTFQGSP_BERT()

void G4HadronicBuilder::BuildHyperonsFTFQGSP_BERT ( )
static

Definition at line 281 of file G4HadronicBuilder.cc.

281 {
282 // For hyperons, Bertini is used at low energies;
283 // for anti-hyperons, FTFP can be used down to zero kinetic energy.
284 BuildFTFQGSP_BERT(G4HadParticles::GetHyperons(), true, "Glauber-Gribov");
285 BuildFTFQGSP_BERT(G4HadParticles::GetAntiHyperons(), false, "Glauber-Gribov");
286}

Referenced by G4HadronPhysicsFTFQGSP_BERT::ConstructProcess().

◆ BuildHyperonsQGSP_FTFP_BERT()

void G4HadronicBuilder::BuildHyperonsQGSP_FTFP_BERT ( G4bool quasiElastic)
static

Definition at line 288 of file G4HadronicBuilder.cc.

288 {
289 // For hyperons, Bertini is used at low energies;
290 // for anti-hyperons, FTFP can be used down to zero kinetic energy.
291 // QGSP is used at high energies in all cases.
292 BuildQGSP_FTFP_BERT(G4HadParticles::GetHyperons(), true, qElastic, "Glauber-Gribov");
293 BuildQGSP_FTFP_BERT(G4HadParticles::GetAntiHyperons(), false, qElastic, "Glauber-Gribov");
294}

Referenced by G4HadronPhysicsINCLXX::Others(), G4HadronPhysicsQGSP_BERT::Others(), and G4HadronPhysicsQGSP_BIC::Others().

◆ BuildKaonsFTFP_BERT()

void G4HadronicBuilder::BuildKaonsFTFP_BERT ( )
static

Definition at line 296 of file G4HadronicBuilder.cc.

296 {
297 BuildFTFP_BERT(G4HadParticles::GetKaons(), true, "Glauber-Gribov");
298}
static const std::vector< G4int > & GetKaons()

Referenced by G4HadronInelasticQBBC::ConstructProcess(), and G4HadronInelasticQBBC_ABLA::ConstructProcess().

◆ BuildKaonsFTFQGSP_BERT()

void G4HadronicBuilder::BuildKaonsFTFQGSP_BERT ( )
static

Definition at line 300 of file G4HadronicBuilder.cc.

300 {
301 BuildFTFQGSP_BERT(G4HadParticles::GetKaons(), true, "Glauber-Gribov");
302}

Referenced by G4HadronPhysicsFTFQGSP_BERT::ConstructProcess().

◆ BuildKaonsQGSP_FTFP_BERT()

void G4HadronicBuilder::BuildKaonsQGSP_FTFP_BERT ( G4bool quasiElastic)
static

Definition at line 304 of file G4HadronicBuilder.cc.

304 {
305 BuildQGSP_FTFP_BERT(G4HadParticles::GetKaons(), true, qElastic, "Glauber-Gribov");
306}

The documentation for this class was generated from the following files: