Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4HadronInelasticQBBC_ABLA.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//---------------------------------------------------------------------------
28//
29// ClassName: G4HadronInelasticQBBC_ABLA
30//
31// Author: Alberto Ribon (CERN), April 2023
32//
33// Similar to the physics list constructor G4HadronInelasticQBBC_ABLA,
34// except for the final-state of inelastic interactions of charged pions and
35// nucleons in which ABLA nuclear de-excitation is utilized (instead of the
36// usual Precompound/de-excitation).
37// This is meant for testing purposes of the coupling between the hadronic
38// string models (FTF and QGS) and ABLA (via G4GeneratorPrecompoundInterface),
39// as well as of the coupling between intra-nuclear cascade models (BERT and BIC)
40// and ABLA.
41//
42// Modified:
43//
44//----------------------------------------------------------------------------
45//
46
48#include "G4SystemOfUnits.hh"
49#include "G4HadronicProcess.hh"
53#include "G4TheoFSGenerator.hh"
54#include "G4FTFModel.hh"
63#include "G4CascadeInterface.hh"
64#include "G4BinaryCascade.hh"
65#include "G4PreCompoundModel.hh"
66#include "G4AblaInterface.hh"
69#include "G4HadronicBuilder.hh"
70#include "G4HadParticles.hh"
71#include "G4HadProcesses.hh"
72#include "G4BuilderType.hh"
74
75
77
78
80 : G4VHadronPhysics( "hInelasticQBBC_ABLA" )
81{
83 auto param = G4HadronicParameters::Instance();
84 param->SetEnableBCParticles( true );
85 param->SetEnableNeutronGeneralProcess( true );
86 param->SetVerboseLevel( ver );
87}
88
89
92 G4bool useFactorXS = param->ApplyFactorXS();
94
95 // configure models
96 const G4double eminFtf = param->GetMinEnergyTransitionFTF_Cascade();
97 const G4double eminBert = 1.0*CLHEP::GeV;
98 const G4double emaxBic = 1.5*CLHEP::GeV;
99 const G4double emaxBert = param->GetMaxEnergyTransitionFTF_Cascade();
100 const G4double emaxBertPions = 12.0*CLHEP::GeV;
101 const G4double emax = param->GetMaxEnergy();
102 if ( G4Threading::IsMasterThread() && param->GetVerboseLevel() > 0 ) {
103 G4cout << "### HadronInelasticQBBC_ABLA Construct Process:\n"
104 << " Emin(FTFP)= " << eminFtf/CLHEP::GeV
105 << " GeV; Emax(FTFP)= " << emax/CLHEP::GeV << " GeV\n"
106 << " Emin(BERT)= " << eminBert/CLHEP::GeV
107 << " GeV; Emax(BERT)= " << emaxBert/CLHEP::GeV
108 << " GeV; Emax(BERTpions)= " << emaxBertPions/CLHEP::GeV
109 << " GeV;\n" << " Emin(BIC) = 0 GeV; Emax(BIC)= "
110 << emaxBic/CLHEP::GeV << " GeV." << G4endl;
111 }
112
113 G4PreCompoundModel* thePreCompound = nullptr;
115 thePreCompound = static_cast< G4PreCompoundModel* >( p );
116 if ( thePreCompound == nullptr ) thePreCompound = new G4PreCompoundModel;
117
118 G4AblaInterface* theAblaInterface = nullptr;
120 theAblaInterface = static_cast< G4AblaInterface* >( pAbla );
121 if ( theAblaInterface == nullptr ) theAblaInterface = new G4AblaInterface;
122
123 auto theFTFP = new G4TheoFSGenerator( "FTFP" );
124 auto theStringModel = new G4FTFModel;
125 theStringModel->SetFragmentationModel( new G4ExcitedStringDecay );
126 theFTFP->SetHighEnergyGenerator( theStringModel );
127 // theFTFP->SetTransport( new G4GeneratorPrecompoundInterface );
128 theFTFP->SetTransport( new G4GeneratorPrecompoundInterface( theAblaInterface ) );
129 theFTFP->SetMinEnergy( eminFtf );
130 theFTFP->SetMaxEnergy( emax );
131
132 auto theBERT = new G4CascadeInterface;
133 theBERT->SetMinEnergy( eminBert );
134 theBERT->SetMaxEnergy( emaxBert );
135 // theBERT->usePreCompoundDeexcitation();
136 theBERT->useAblaDeexcitation();
137
138 auto theBERT1 = new G4CascadeInterface;
139 theBERT1->SetMinEnergy( eminBert );
140 theBERT1->SetMaxEnergy( emaxBertPions );
141 // theBERT1->usePreCompoundDeexcitation();
142 theBERT1->useAblaDeexcitation();
143
144 // auto theBIC = new G4BinaryCascade( thePreCompound );
145 auto theBIC = new G4BinaryCascade( theAblaInterface );
146 theBIC->SetMaxEnergy( emaxBic );
147
148 // p
150 G4HadronicProcess* hp =
151 new G4HadronInelasticProcess( particle->GetParticleName() + "Inelastic", particle );
152 hp->AddDataSet( new G4ParticleInelasticXS( particle ) );
153 hp->RegisterMe( theFTFP );
154 hp->RegisterMe( theBERT );
155 hp->RegisterMe( theBIC );
156 ph->RegisterProcess( hp, particle );
157 if ( useFactorXS ) hp->MultiplyCrossSectionBy( param->XSFactorNucleonInelastic() );
158
159 // n
160 particle = G4Neutron::Neutron();
161 G4HadronicProcess* ni = new G4HadronInelasticProcess( "neutronInelastic", particle );
162 ni->RegisterMe( theFTFP );
163 ni->RegisterMe( theBERT );
164 ni->RegisterMe( theBIC );
166
167 // pi+
168 particle = G4PionPlus::PionPlus();
169 hp = new G4HadronInelasticProcess( particle->GetParticleName() + "Inelastic", particle );
170 hp->AddDataSet( new G4BGGPionInelasticXS( particle ) );
171 hp->RegisterMe( theFTFP );
172 hp->RegisterMe( theBERT1 );
173 hp->RegisterMe( theBIC );
174 ph->RegisterProcess( hp, particle );
175 if ( useFactorXS ) hp->MultiplyCrossSectionBy( param->XSFactorPionInelastic() );
176
177 // pi-
178 particle = G4PionMinus::PionMinus();
179 hp = new G4HadronInelasticProcess( particle->GetParticleName() + "Inelastic", particle );
180 hp->AddDataSet( new G4BGGPionInelasticXS( particle ) );
181 hp->RegisterMe( theFTFP );
182 hp->RegisterMe( theBERT1 );
183 hp->RegisterMe( theBIC );
184 ph->RegisterProcess( hp, particle );
185 if ( useFactorXS ) hp->MultiplyCrossSectionBy( param->XSFactorPionInelastic() );
186
187 // kaons
189
190 // high energy particles
191 if ( emax > param->EnergyThresholdForHeavyHadrons() ) {
192
193 // pbar, nbar, anti light ions
195
196 // hyperons
198
199 // b-, c- baryons and mesons
201 }
202}
@ bHadronInelastic
#define G4_DECLARE_PHYSCONSTR_FACTORY(physics_constructor)
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
static void BuildNeutronInelasticAndCapture(G4HadronicProcess *)
static void BuildBCHadronsFTFP_BERT()
static void BuildHyperonsFTFP_BERT()
static void BuildKaonsFTFP_BERT()
static void BuildAntiLightIonsFTFP()
G4HadronicInteraction * FindModel(const G4String &name)
static G4HadronicInteractionRegistry * Instance()
void SetMinEnergy(G4double anEnergy)
static G4HadronicParameters * Instance()
G4double GetMinEnergyTransitionFTF_Cascade() const
G4double GetMaxEnergyTransitionFTF_Cascade() const
G4double EnergyThresholdForHeavyHadrons() const
G4double XSFactorPionInelastic() const
G4double XSFactorNucleonInelastic() const
void AddDataSet(G4VCrossSectionDataSet *aDataSet)
void MultiplyCrossSectionBy(G4double factor)
void RegisterMe(G4HadronicInteraction *a)
static G4Neutron * Neutron()
Definition G4Neutron.cc:101
const G4String & GetParticleName() const
G4bool RegisterProcess(G4VProcess *process, G4ParticleDefinition *particle)
static G4PhysicsListHelper * GetPhysicsListHelper()
static G4PionMinus * PionMinus()
static G4PionPlus * PionPlus()
Definition G4PionPlus.cc:93
static G4Proton * Proton()
Definition G4Proton.cc:90
void SetFragmentationModel(G4VStringFragmentation *aModel)
G4bool IsMasterThread()