Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4QMDReaction.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// 080505 Fixed and changed sampling method of impact parameter by T. Koi
27// 080602 Fix memory leaks by T. Koi
28// 080612 Delete unnecessary dependency and unused functions
29// Change criterion of reaction by T. Koi
30// 081107 Add UnUseGEM (then use the default channel of G4Evaporation)
31// UseFrag (chage criterion of a inelastic reaction)
32// Fix bug in nucleon projectiles by T. Koi
33// 090122 Be8 -> Alpha + Alpha
34// 090331 Change member shenXS and genspaXS object to pointer
35// 091119 Fix for incidence of neutral particles
36//
37#include "G4QMDReaction.hh"
38#include "G4QMDNucleus.hh"
40
42#include "G4SystemOfUnits.hh"
43#include "G4NistManager.hh"
44
46: G4HadronicInteraction("QMDModel")
47, system ( NULL )
48, deltaT ( 1 ) // in fsec (c=1)
49, maxTime ( 100 ) // will have maxTime-th time step
50, envelopF ( 1.05 ) // 10% for Peripheral reactions
51, gem ( true )
52, frag ( false )
53{
54
55 //090331
56 shenXS = new G4IonsShenCrossSection();
57 //genspaXS = new G4GeneralSpaceNNCrossSection();
58 piNucXS = new G4PiNuclearCrossSection();
59 meanField = new G4QMDMeanField();
60 collision = new G4QMDCollision();
61
62 excitationHandler = new G4ExcitationHandler;
63 evaporation = new G4Evaporation;
64 excitationHandler->SetEvaporation( evaporation );
65 setEvaporationCh();
66}
67
68
69
71{
72 delete evaporation;
73 delete excitationHandler;
74 delete collision;
75 delete meanField;
76}
77
78
79
81{
82 //G4cout << "G4QMDReaction::ApplyYourself" << G4endl;
83
85
86 system = new G4QMDSystem;
87
88 G4int proj_Z = 0;
89 G4int proj_A = 0;
90 G4ParticleDefinition* proj_pd = ( G4ParticleDefinition* ) projectile.GetDefinition();
91 if ( proj_pd->GetParticleType() == "nucleus" )
92 {
93 proj_Z = proj_pd->GetAtomicNumber();
94 proj_A = proj_pd->GetAtomicMass();
95 }
96 else
97 {
98 proj_Z = (int)( proj_pd->GetPDGCharge()/eplus );
99 proj_A = 1;
100 }
101 //G4int targ_Z = int ( target.GetZ() + 0.5 );
102 //G4int targ_A = int ( target.GetN() + 0.5 );
103 //migrate to integer A and Z (GetN_asInt returns number of neutrons in the nucleus since this)
104 G4int targ_Z = target.GetZ_asInt();
105 G4int targ_A = target.GetA_asInt();
106 G4ParticleDefinition* targ_pd = G4ParticleTable::GetParticleTable()->GetIon( targ_Z , targ_A , 0.0 );
107
108
109 //G4NistManager* nistMan = G4NistManager::Instance();
110// G4Element* G4NistManager::FindOrBuildElement( targ_Z );
111
112 const G4DynamicParticle* proj_dp = new G4DynamicParticle ( proj_pd , projectile.Get4Momentum() );
113 //const G4Element* targ_ele = nistMan->FindOrBuildElement( targ_Z );
114 //G4double aTemp = projectile.GetMaterial()->GetTemperature();
115
116 //090331
117
118 G4VCrossSectionDataSet* theXS = shenXS;
119
120 if ( proj_pd->GetParticleType() == "meson" ) theXS = piNucXS;
121
122 //G4double xs_0 = genspaXS->GetCrossSection ( proj_dp , targ_ele , aTemp );
123 //G4double xs_0 = theXS->GetCrossSection ( proj_dp , targ_ele , aTemp );
124 //110822
125 G4double xs_0 = theXS->GetIsoCrossSection ( proj_dp , targ_Z , targ_A );
126
127 G4double bmax_0 = std::sqrt( xs_0 / pi );
128 //std::cout << "bmax_0 in fm (fermi) " << bmax_0/fermi << std::endl;
129
130 //delete proj_dp;
131
132 G4bool elastic = true;
133
134 std::vector< G4QMDNucleus* > nucleuses; // Secondary nuceluses
135 G4ThreeVector boostToReac; // ReactionSystem (CM or NN);
136 G4ThreeVector boostBackToLAB; // Reaction System to LAB;
137
138 G4LorentzVector targ4p( G4ThreeVector( 0.0 ) , targ_pd->GetPDGMass()/GeV );
139 G4ThreeVector boostLABtoCM = targ4p.findBoostToCM( proj_dp->Get4Momentum()/GeV ); // CM of target and proj;
140
141 G4double p1 = proj_dp->GetMomentum().mag()/GeV/proj_A;
142 G4double m1 = proj_dp->GetDefinition()->GetPDGMass()/GeV/proj_A;
143 G4double e1 = std::sqrt( p1*p1 + m1*m1 );
144 G4double e2 = targ_pd->GetPDGMass()/GeV/targ_A;
145 G4double beta_nn = -p1 / ( e1+e2 );
146
147 G4ThreeVector boostLABtoNN ( 0. , 0. , beta_nn ); // CM of NN;
148
149 G4double beta_nncm = ( - boostLABtoCM.beta() + boostLABtoNN.beta() ) / ( 1 - boostLABtoCM.beta() * boostLABtoNN.beta() ) ;
150
151 //std::cout << targ4p << std::endl;
152 //std::cout << proj_dp->Get4Momentum()<< std::endl;
153 //std::cout << beta_nncm << std::endl;
154 G4ThreeVector boostNNtoCM( 0. , 0. , beta_nncm ); //
155 G4ThreeVector boostCMtoNN( 0. , 0. , -beta_nncm ); //
156
157 boostToReac = boostLABtoNN;
158 boostBackToLAB = -boostLABtoNN;
159
160 delete proj_dp;
161
162 while ( elastic )
163 {
164
165// impact parameter
166 //G4double bmax = 1.05*(bmax_0/fermi); // 10% for Peripheral reactions
167 G4double bmax = envelopF*(bmax_0/fermi);
168 G4double b = bmax * std::sqrt ( G4UniformRand() );
169//071112
170 //G4double b = 0;
171 //G4double b = bmax;
172 //G4double b = bmax/1.05 * 0.7 * G4UniformRand();
173
174 //G4cout << "G4QMDRESULT bmax_0 = " << bmax_0/fermi << " fm, bmax = " << bmax << " fm , b = " << b << " fm " << G4endl;
175
176 G4double plab = projectile.GetTotalMomentum()/GeV;
177 G4double elab = ( projectile.GetKineticEnergy() + proj_pd->GetPDGMass() + targ_pd->GetPDGMass() )/GeV;
178
179 calcOffSetOfCollision( b , proj_pd , targ_pd , plab , elab , bmax , boostCMtoNN );
180
181// Projectile
182 G4LorentzVector proj4pLAB = projectile.Get4Momentum()/GeV;
183
184 G4QMDGroundStateNucleus* proj(NULL);
185 if ( projectile.GetDefinition()->GetParticleType() == "nucleus"
186 || projectile.GetDefinition()->GetParticleName() == "proton"
187 || projectile.GetDefinition()->GetParticleName() == "neutron" )
188 {
189
190 proj_Z = proj_pd->GetAtomicNumber();
191 proj_A = proj_pd->GetAtomicMass();
192
193 proj = new G4QMDGroundStateNucleus( proj_Z , proj_A );
194 //proj->ShowParticipants();
195
196
197 meanField->SetSystem ( proj );
198 proj->SetTotalPotential( meanField->GetTotalPotential() );
200
201 }
202
203// Target
204 //G4int iz = int ( target.GetZ() );
205 //G4int ia = int ( target.GetN() );
206 //migrate to integer A and Z (GetN_asInt returns number of neutrons in the nucleus since this)
207 G4int iz = int ( target.GetZ_asInt() );
208 G4int ia = int ( target.GetA_asInt() );
209
211
212 meanField->SetSystem (targ );
213 targ->SetTotalPotential( meanField->GetTotalPotential() );
215
216 //G4LorentzVector targ4p( G4ThreeVector( 0.0 ) , targ->GetNuclearMass()/GeV );
217// Boost Vector to CM
218 //boostToCM = targ4p.findBoostToCM( proj4pLAB );
219
220// Target
221 for ( G4int i = 0 ; i < targ->GetTotalNumberOfParticipant() ; i++ )
222 {
223
224 G4ThreeVector p0 = targ->GetParticipant( i )->GetMomentum();
225 G4ThreeVector r0 = targ->GetParticipant( i )->GetPosition();
226
227 G4ThreeVector p ( p0.x() + coulomb_collision_px_targ
228 , p0.y()
229 , p0.z() * coulomb_collision_gamma_targ + coulomb_collision_pz_targ );
230
231 G4ThreeVector r ( r0.x() + coulomb_collision_rx_targ
232 , r0.y()
233 , r0.z() / coulomb_collision_gamma_targ + coulomb_collision_rz_targ );
234
235 system->SetParticipant( new G4QMDParticipant( targ->GetParticipant( i )->GetDefinition() , p , r ) );
236 system->GetParticipant( i )->SetTarget();
237
238 }
239
240 G4LorentzVector proj4pCM = CLHEP::boostOf ( proj4pLAB , boostToReac );
241 G4LorentzVector targ4pCM = CLHEP::boostOf ( targ4p , boostToReac );
242
243// Projectile
244 if ( proj != NULL )
245 {
246
247// projectile is nucleus
248
249 for ( G4int i = 0 ; i < proj->GetTotalNumberOfParticipant() ; i++ )
250 {
251
252 G4ThreeVector p0 = proj->GetParticipant( i )->GetMomentum();
253 G4ThreeVector r0 = proj->GetParticipant( i )->GetPosition();
254
255 G4ThreeVector p ( p0.x() + coulomb_collision_px_proj
256 , p0.y()
257 , p0.z() * coulomb_collision_gamma_proj + coulomb_collision_pz_proj );
258
259 G4ThreeVector r ( r0.x() + coulomb_collision_rx_proj
260 , r0.y()
261 , r0.z() / coulomb_collision_gamma_proj + coulomb_collision_rz_proj );
262
263 system->SetParticipant( new G4QMDParticipant( proj->GetParticipant( i )->GetDefinition() , p , r ) );
265 }
266
267 }
268 else
269 {
270
271// projectile is particle
272
273 // avoid multiple set in "elastic" loop
275 {
276
278
279 G4ThreeVector p0( 0 );
280 G4ThreeVector r0( 0 );
281
282 G4ThreeVector p ( p0.x() + coulomb_collision_px_proj
283 , p0.y()
284 , p0.z() * coulomb_collision_gamma_proj + coulomb_collision_pz_proj );
285
286 G4ThreeVector r ( r0.x() + coulomb_collision_rx_proj
287 , r0.y()
288 , r0.z() / coulomb_collision_gamma_proj + coulomb_collision_rz_proj );
289
290 system->SetParticipant( new G4QMDParticipant( (G4ParticleDefinition*)projectile.GetDefinition() , p , r ) );
291 // This is not important becase only 1 projectile particle.
292 system->GetParticipant ( i )->SetProjectile();
293 }
294
295 }
296 //system->ShowParticipants();
297
298 delete targ;
299 delete proj;
300
301 meanField->SetSystem ( system );
302 collision->SetMeanField ( meanField );
303
304// Time Evolution
305 //std::cout << "Start time evolution " << std::endl;
306 //system->ShowParticipants();
307 for ( G4int i = 0 ; i < maxTime ; i++ )
308 {
309 //G4cout << " do Paropagate " << i << " th time step. " << G4endl;
310 meanField->DoPropagation( deltaT );
311 //system->ShowParticipants();
312 collision->CalKinematicsOfBinaryCollisions( deltaT );
313
314 if ( i / 10 * 10 == i )
315 {
316 //G4cout << i << " th time step. " << G4endl;
317 //system->ShowParticipants();
318 }
319 //system->ShowParticipants();
320 }
321 //system->ShowParticipants();
322
323
324 //std::cout << "Doing Cluster Judgment " << std::endl;
325
326 nucleuses = meanField->DoClusterJudgment();
327
328// Elastic Judgment
329
330 G4int numberOfSecondary = int ( nucleuses.size() ) + system->GetTotalNumberOfParticipant();
331
332 G4int sec_a_Z = 0;
333 G4int sec_a_A = 0;
334 G4ParticleDefinition* sec_a_pd = NULL;
335 G4int sec_b_Z = 0;
336 G4int sec_b_A = 0;
337 G4ParticleDefinition* sec_b_pd = NULL;
338
339 if ( numberOfSecondary == 2 )
340 {
341
342 G4bool elasticLike_system = false;
343 if ( nucleuses.size() == 2 )
344 {
345
346 sec_a_Z = nucleuses[0]->GetAtomicNumber();
347 sec_a_A = nucleuses[0]->GetMassNumber();
348 sec_b_Z = nucleuses[1]->GetAtomicNumber();
349 sec_b_A = nucleuses[1]->GetMassNumber();
350
351 if ( ( sec_a_Z == proj_Z && sec_a_A == proj_A && sec_b_Z == targ_Z && sec_b_A == targ_A )
352 || ( sec_a_Z == targ_Z && sec_a_A == targ_A && sec_b_Z == proj_Z && sec_b_A == proj_A ) )
353 {
354 elasticLike_system = true;
355 }
356
357 }
358 else if ( nucleuses.size() == 1 )
359 {
360
361 sec_a_Z = nucleuses[0]->GetAtomicNumber();
362 sec_a_A = nucleuses[0]->GetMassNumber();
363 sec_b_pd = system->GetParticipant( 0 )->GetDefinition();
364
365 if ( ( sec_a_Z == proj_Z && sec_a_A == proj_A && sec_b_pd == targ_pd )
366 || ( sec_a_Z == targ_Z && sec_a_A == targ_A && sec_b_pd == proj_pd ) )
367 {
368 elasticLike_system = true;
369 }
370
371 }
372 else
373 {
374
375 sec_a_pd = system->GetParticipant( 0 )->GetDefinition();
376 sec_b_pd = system->GetParticipant( 1 )->GetDefinition();
377
378 if ( ( sec_a_pd == proj_pd && sec_b_pd == targ_pd )
379 || ( sec_a_pd == targ_pd && sec_b_pd == proj_pd ) )
380 {
381 elasticLike_system = true;
382 }
383
384 }
385
386 if ( elasticLike_system == true )
387 {
388
389 G4bool elasticLike_energy = true;
390// Cal ExcitationEnergy
391 for ( G4int i = 0 ; i < int ( nucleuses.size() ) ; i++ )
392 {
393
394 //meanField->SetSystem( nucleuses[i] );
395 meanField->SetNucleus( nucleuses[i] );
396 //nucleuses[i]->SetTotalPotential( meanField->GetTotalPotential() );
397 //nucleuses[i]->CalEnergyAndAngularMomentumInCM();
398
399 if ( nucleuses[i]->GetExcitationEnergy()*GeV > 1.0*MeV ) elasticLike_energy = false;
400
401 }
402
403// Check Collision
404 G4bool withCollision = true;
405 if ( system->GetNOCollision() == 0 ) withCollision = false;
406
407// Final judegement for Inelasitc or Elastic;
408//
409// ElasticLike without Collision
410 //if ( elasticLike_energy == true && withCollision == false ) elastic = true; // ielst = 0
411// ElasticLike with Collision
412 //if ( elasticLike_energy == true && withCollision == true ) elastic = true; // ielst = 1
413// InelasticLike without Collision
414 //if ( elasticLike_energy == false ) elastic = false; // ielst = 2
415 if ( frag == true )
416 if ( elasticLike_energy == false ) elastic = false;
417// InelasticLike with Collision
418 if ( elasticLike_energy == false && withCollision == true ) elastic = false; // ielst = 3
419
420 }
421
422 }
423 else
424 {
425
426// numberOfSecondary != 2
427 elastic = false;
428
429 }
430
431//071115
432 //G4cout << elastic << G4endl;
433 // if elastic is true try again from sampling of impact parameter
434
435 if ( elastic == true )
436 {
437 // delete this nucleues
438 for ( std::vector< G4QMDNucleus* >::iterator
439 it = nucleuses.begin() ; it != nucleuses.end() ; it++ )
440 {
441 delete *it;
442 }
443 nucleuses.clear();
444 }
445 }
446
447
448// Statical Decay Phase
449
450 for ( std::vector< G4QMDNucleus* >::iterator it
451 = nucleuses.begin() ; it != nucleuses.end() ; it++ )
452 {
453
454/*
455 std::cout << "G4QMDRESULT "
456 << (*it)->GetAtomicNumber()
457 << " "
458 << (*it)->GetMassNumber()
459 << " "
460 << (*it)->Get4Momentum()
461 << " "
462 << (*it)->Get4Momentum().vect()
463 << " "
464 << (*it)->Get4Momentum().restMass()
465 << " "
466 << (*it)->GetNuclearMass()/GeV
467 << std::endl;
468*/
469
470 meanField->SetNucleus ( *it );
471
472 if ( (*it)->GetAtomicNumber() == 0 // neutron cluster
473 || (*it)->GetAtomicNumber() == (*it)->GetMassNumber() ) // proton cluster
474 {
475 // push back system
476 for ( G4int i = 0 ; i < (*it)->GetTotalNumberOfParticipant() ; i++ )
477 {
478 G4QMDParticipant* aP = new G4QMDParticipant( ( (*it)->GetParticipant( i ) )->GetDefinition() , ( (*it)->GetParticipant( i ) )->GetMomentum() , ( (*it)->GetParticipant( i ) )->GetPosition() );
479 system->SetParticipant ( aP );
480 }
481 continue;
482 }
483
484 G4double nucleus_e = std::sqrt ( std::pow ( (*it)->GetNuclearMass()/GeV , 2 ) + std::pow ( (*it)->Get4Momentum().vect().mag() , 2 ) );
485 G4LorentzVector nucleus_p4CM ( (*it)->Get4Momentum().vect() , nucleus_e );
486
487// std::cout << "G4QMDRESULT nucleus deltaQ " << deltaQ << std::endl;
488
489 G4int ia = (*it)->GetMassNumber();
490 G4int iz = (*it)->GetAtomicNumber();
491
492 G4LorentzVector lv ( G4ThreeVector( 0.0 ) , (*it)->GetExcitationEnergy()*GeV + G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass( iz , ia ) );
493
494 G4Fragment* aFragment = new G4Fragment( ia , iz , lv );
495
497 rv = excitationHandler->BreakItUp( *aFragment );
498 G4bool notBreak = true;
499 for ( G4ReactionProductVector::iterator itt
500 = rv->begin() ; itt != rv->end() ; itt++ )
501 {
502
503 notBreak = false;
504 // Secondary from this nucleus (*it)
505 G4ParticleDefinition* pd = (*itt)->GetDefinition();
506
507 G4LorentzVector p4 ( (*itt)->GetMomentum()/GeV , (*itt)->GetTotalEnergy()/GeV ); //in nucleus(*it) rest system
508 G4LorentzVector p4_CM = CLHEP::boostOf( p4 , -nucleus_p4CM.findBoostToCM() ); // Back to CM
509 G4LorentzVector p4_LAB = CLHEP::boostOf( p4_CM , boostBackToLAB ); // Back to LAB
510
511
512//090122
513 //theParticleChange.AddSecondary( dp );
514 if ( !( pd->GetAtomicNumber() == 4 && pd->GetAtomicMass() == 8 ) )
515 {
516 G4DynamicParticle* dp = new G4DynamicParticle( pd , p4_LAB*GeV );
518 }
519 else
520 {
521 //Be8 -> Alpha + Alpha + Q
522 G4ThreeVector randomized_direction( G4UniformRand() , G4UniformRand() , G4UniformRand() );
523 randomized_direction = randomized_direction.unit();
524 G4double q_decay = (*itt)->GetMass() - 2*G4Alpha::Alpha()->GetPDGMass();
525 G4double p_decay = std::sqrt ( std::pow(G4Alpha::Alpha()->GetPDGMass()+q_decay/2,2) - std::pow(G4Alpha::Alpha()->GetPDGMass() , 2 ) );
526 G4LorentzVector p4_a1 ( p_decay*randomized_direction , G4Alpha::Alpha()->GetPDGMass()+q_decay/2 ); //in Be8 rest system
527
528 G4LorentzVector p4_a1_Be8 = CLHEP::boostOf ( p4_a1/GeV , -p4.findBoostToCM() );
529 G4LorentzVector p4_a1_CM = CLHEP::boostOf ( p4_a1_Be8 , -nucleus_p4CM.findBoostToCM() );
530 G4LorentzVector p4_a1_LAB = CLHEP::boostOf ( p4_a1_CM , boostBackToLAB );
531
532 G4LorentzVector p4_a2 ( -p_decay*randomized_direction , G4Alpha::Alpha()->GetPDGMass()+q_decay/2 ); //in Be8 rest system
533
534 G4LorentzVector p4_a2_Be8 = CLHEP::boostOf ( p4_a2/GeV , -p4.findBoostToCM() );
535 G4LorentzVector p4_a2_CM = CLHEP::boostOf ( p4_a2_Be8 , -nucleus_p4CM.findBoostToCM() );
536 G4LorentzVector p4_a2_LAB = CLHEP::boostOf ( p4_a2_CM , boostBackToLAB );
537
538 G4DynamicParticle* dp1 = new G4DynamicParticle( G4Alpha::Alpha() , p4_a1_LAB*GeV );
539 G4DynamicParticle* dp2 = new G4DynamicParticle( G4Alpha::Alpha() , p4_a2_LAB*GeV );
542 }
543//090122
544
545/*
546 std::cout
547 << "Regist Secondary "
548 << (*itt)->GetDefinition()->GetParticleName()
549 << " "
550 << (*itt)->GetMomentum()/GeV
551 << " "
552 << (*itt)->GetKineticEnergy()/GeV
553 << " "
554 << (*itt)->GetMass()/GeV
555 << " "
556 << (*itt)->GetTotalEnergy()/GeV
557 << " "
558 << (*itt)->GetTotalEnergy()/GeV * (*itt)->GetTotalEnergy()/GeV
559 - (*itt)->GetMomentum()/GeV * (*itt)->GetMomentum()/GeV
560 << " "
561 << nucleus_p4CM.findBoostToCM()
562 << " "
563 << p4
564 << " "
565 << p4_CM
566 << " "
567 << p4_LAB
568 << std::endl;
569*/
570
571 }
572 if ( notBreak == true )
573 {
574
575 G4ParticleDefinition* pd = G4ParticleTable::GetParticleTable()->GetIon( (*it)->GetAtomicNumber() , (*it)->GetMassNumber(), (*it)->GetExcitationEnergy()*GeV );
576 G4LorentzVector p4_CM = nucleus_p4CM;
577 G4LorentzVector p4_LAB = CLHEP::boostOf( p4_CM , boostBackToLAB ); // Back to LAB
578 G4DynamicParticle* dp = new G4DynamicParticle( pd , p4_LAB*GeV );
580
581 }
582
583 for ( G4ReactionProductVector::iterator itt
584 = rv->begin() ; itt != rv->end() ; itt++ )
585 {
586 delete *itt;
587 }
588 delete rv;
589
590 delete aFragment;
591
592 }
593
594
595
596 for ( G4int i = 0 ; i < system->GetTotalNumberOfParticipant() ; i++ )
597 {
598
599 // Secondary particles
600
602 G4LorentzVector p4_CM = system->GetParticipant( i )->Get4Momentum();
603 G4LorentzVector p4_LAB = CLHEP::boostOf( p4_CM , boostBackToLAB );
604 G4DynamicParticle* dp = new G4DynamicParticle( pd , p4_LAB*GeV );
606
607/*
608 G4cout << "G4QMDRESULT "
609 << "r" << i << " " << system->GetParticipant ( i ) -> GetPosition() << " "
610 << "p" << i << " " << system->GetParticipant ( i ) -> Get4Momentum()
611 << G4endl;
612*/
613
614 }
615
616 for ( std::vector< G4QMDNucleus* >::iterator it
617 = nucleuses.begin() ; it != nucleuses.end() ; it++ )
618 {
619 delete *it; // delete nulceuse
620 }
621 nucleuses.clear();
622
623 system->Clear();
624 delete system;
625
627
628 return &theParticleChange;
629
630}
631
632
633
634void G4QMDReaction::calcOffSetOfCollision( G4double b ,
635G4ParticleDefinition* pd_proj ,
636G4ParticleDefinition* pd_targ ,
637G4double ptot , G4double etot , G4double bmax , G4ThreeVector boostToCM )
638{
639
640 G4double mass_proj = pd_proj->GetPDGMass()/GeV;
641 G4double mass_targ = pd_targ->GetPDGMass()/GeV;
642
643 G4double stot = std::sqrt ( etot*etot - ptot*ptot );
644
645 G4double pstt = std::sqrt ( ( stot*stot - ( mass_proj + mass_targ ) * ( mass_proj + mass_targ )
646 ) * ( stot*stot - ( mass_proj - mass_targ ) * ( mass_proj - mass_targ ) ) )
647 / ( 2.0 * stot );
648
649 G4double pzcc = pstt;
650 G4double eccm = stot - ( mass_proj + mass_targ );
651
652 G4int zp = 1;
653 G4int ap = 1;
654 if ( pd_proj->GetParticleType() == "nucleus" )
655 {
656 zp = pd_proj->GetAtomicNumber();
657 ap = pd_proj->GetAtomicMass();
658 }
659 else
660 {
661 // proton, neutron, mesons
662 zp = int ( pd_proj->GetPDGCharge()/eplus + 0.5 );
663 // ap = 1;
664 }
665
666
667 G4int zt = pd_targ->GetAtomicNumber();
668 G4int at = pd_targ->GetAtomicMass();
669
670
671 //G4double rmax0 = 8.0; // T.K dicide parameter value // for low energy
672 G4double rmax0 = bmax + 4.0;
673 G4double rmax = std::sqrt( rmax0*rmax0 + b*b );
674
675 G4double ccoul = 0.001439767;
676 G4double pcca = 1.0 - double ( zp * zt ) * ccoul / eccm / rmax - ( b / rmax )*( b / rmax );
677
678 G4double pccf = std::sqrt( pcca );
679
680 //Fix for neutral particles
681 G4double aas1 = 0.0;
682 G4double bbs = 0.0;
683
684 if ( zp != 0 )
685 {
686 G4double aas = 2.0 * eccm * b / double ( zp * zt ) / ccoul;
687 bbs = 1.0 / std::sqrt ( 1.0 + aas*aas );
688 aas1 = ( 1.0 + aas * b / rmax ) * bbs;
689 }
690
691 G4double cost = 0.0;
692 G4double sint = 0.0;
693 G4double thet1 = 0.0;
694 G4double thet2 = 0.0;
695 if ( 1.0 - aas1*aas1 <= 0 || 1.0 - bbs*bbs <= 0.0 )
696 {
697 cost = 1.0;
698 sint = 0.0;
699 }
700 else
701 {
702 G4double aat1 = aas1 / std::sqrt ( 1.0 - aas1*aas1 );
703 G4double aat2 = bbs / std::sqrt ( 1.0 - bbs*bbs );
704
705 thet1 = std::atan ( aat1 );
706 thet2 = std::atan ( aat2 );
707
708// TK enter to else block
709 G4double theta = thet1 - thet2;
710 cost = std::cos( theta );
711 sint = std::sin( theta );
712 }
713
714 G4double rzpr = -rmax * cost * ( mass_targ ) / ( mass_proj + mass_targ );
715 G4double rzta = rmax * cost * ( mass_proj ) / ( mass_proj + mass_targ );
716
717 G4double rxpr = rmax / 2.0 * sint;
718
719 G4double rxta = -rxpr;
720
721
722 G4double pzpc = pzcc * ( cost * pccf + sint * b / rmax );
723 G4double pxpr = pzcc * ( -sint * pccf + cost * b / rmax );
724
725 G4double pztc = - pzpc;
726 G4double pxta = - pxpr;
727
728 G4double epc = std::sqrt ( pzpc*pzpc + pxpr*pxpr + mass_proj*mass_proj );
729 G4double etc = std::sqrt ( pztc*pztc + pxta*pxta + mass_targ*mass_targ );
730
731 G4double pzpr = pzpc;
732 G4double pzta = pztc;
733 G4double epr = epc;
734 G4double eta = etc;
735
736// CM -> NN
737 G4double gammacm = boostToCM.gamma();
738 //G4double betacm = -boostToCM.beta();
739 G4double betacm = boostToCM.z();
740 pzpr = pzpc + betacm * gammacm * ( gammacm / ( 1. + gammacm ) * pzpc * betacm + epc );
741 pzta = pztc + betacm * gammacm * ( gammacm / ( 1. + gammacm ) * pztc * betacm + etc );
742 epr = gammacm * ( epc + betacm * pzpc );
743 eta = gammacm * ( etc + betacm * pztc );
744
745 //G4double betpr = pzpr / epr;
746 //G4double betta = pzta / eta;
747
748 G4double gammpr = epr / ( mass_proj );
749 G4double gammta = eta / ( mass_targ );
750
751 pzta = pzta / double ( at );
752 pxta = pxta / double ( at );
753
754 pzpr = pzpr / double ( ap );
755 pxpr = pxpr / double ( ap );
756
757 G4double zeroz = 0.0;
758
759 rzpr = rzpr -zeroz;
760 rzta = rzta -zeroz;
761
762 // Set results
763 coulomb_collision_gamma_proj = gammpr;
764 coulomb_collision_rx_proj = rxpr;
765 coulomb_collision_rz_proj = rzpr;
766 coulomb_collision_px_proj = pxpr;
767 coulomb_collision_pz_proj = pzpr;
768
769 coulomb_collision_gamma_targ = gammta;
770 coulomb_collision_rx_targ = rxta;
771 coulomb_collision_rz_targ = rzta;
772 coulomb_collision_px_targ = pxta;
773 coulomb_collision_pz_targ = pzta;
774
775}
776
777
778
779void G4QMDReaction::setEvaporationCh()
780{
781
782 if ( gem == true )
783 evaporation->SetGEMChannel();
784 else
785 evaporation->SetDefaultChannel();
786
787}
@ stopAndKill
std::vector< G4ReactionProduct * > G4ReactionProductVector
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4UniformRand()
Definition: Randomize.hh:53
double beta() const
Definition: SpaceVectorP.cc:30
double z() const
Hep3Vector unit() const
double x() const
double y() const
double mag() const
double gamma() const
Definition: SpaceVectorP.cc:39
Hep3Vector findBoostToCM() const
static G4Alpha * Alpha()
Definition: G4Alpha.cc:89
G4ParticleDefinition * GetDefinition() const
G4LorentzVector Get4Momentum() const
G4ThreeVector GetMomentum() const
void SetGEMChannel()
void SetDefaultChannel()
void SetEvaporation(G4VEvaporation *ptr)
G4ReactionProductVector * BreakItUp(const G4Fragment &theInitialState) const
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP)
G4double GetTotalMomentum() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetIonMass(G4int Z, G4int A, G4int L=0) const
!! Only ground states are supported now
Definition: G4IonTable.cc:774
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
G4int GetAtomicNumber() const
const G4String & GetParticleType() const
G4int GetAtomicMass() const
G4double GetPDGCharge() const
const G4String & GetParticleName() const
static G4ParticleTable * GetParticleTable()
G4IonTable * GetIonTable()
G4ParticleDefinition * GetIon(G4int atomicNumber, G4int atomicMass, G4double excitationEnergy)
void SetMeanField(G4QMDMeanField *meanfield)
void CalKinematicsOfBinaryCollisions(G4double)
G4double GetTotalPotential()
void SetNucleus(G4QMDNucleus *aSystem)
void DoPropagation(G4double)
std::vector< G4QMDNucleus * > DoClusterJudgment()
void SetSystem(G4QMDSystem *aSystem)
void SetTotalPotential(G4double x)
Definition: G4QMDNucleus.hh:62
void CalEnergyAndAngularMomentumInCM()
G4ThreeVector GetPosition()
G4ParticleDefinition * GetDefinition()
G4LorentzVector Get4Momentum()
G4ThreeVector GetMomentum()
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4QMDParticipant * GetParticipant(G4int i)
Definition: G4QMDSystem.hh:62
G4int GetTotalNumberOfParticipant()
Definition: G4QMDSystem.hh:60
void Clear()
Definition: G4QMDSystem.cc:68
void SetParticipant(G4QMDParticipant *particle)
Definition: G4QMDSystem.hh:51
G4int GetNOCollision()
Definition: G4QMDSystem.hh:65
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int Z, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
HepLorentzVector boostOf(const HepLorentzVector &vec, const Hep3Vector &betaVector)