Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4CashKarpRKF45.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// The Cash-Karp Runge-Kutta-Fehlberg 4/5 method is an embedded fourth
30// order method (giving fifth-order accuracy) for the solution of an ODE.
31// Two different fourth order estimates are calculated; their difference
32// gives an error estimate. [ref. Numerical Recipes in C, 2nd Edition]
33// It is used to integrate the equations of the motion of a particle
34// in a magnetic field.
35//
36// [ref. Numerical Recipes in C, 2nd Edition]
37//
38// -------------------------------------------------------------------
39
40#include "G4CashKarpRKF45.hh"
41#include "G4LineSection.hh"
42
43/////////////////////////////////////////////////////////////////////
44//
45// Constructor
46
48 G4int noIntegrationVariables,
49 G4bool primary)
50 : G4MagIntegratorStepper(EqRhs, noIntegrationVariables),
51 fLastStepLength(0.), fAuxStepper(0)
52{
53 const G4int numberOfVariables = noIntegrationVariables;
54
55 ak2 = new G4double[numberOfVariables] ;
56 ak3 = new G4double[numberOfVariables] ;
57 ak4 = new G4double[numberOfVariables] ;
58 ak5 = new G4double[numberOfVariables] ;
59 ak6 = new G4double[numberOfVariables] ;
60 ak7 = 0;
61 yTemp = new G4double[numberOfVariables] ;
62 yIn = new G4double[numberOfVariables] ;
63
64 fLastInitialVector = new G4double[numberOfVariables] ;
65 fLastFinalVector = new G4double[numberOfVariables] ;
66 fLastDyDx = new G4double[numberOfVariables];
67
68 fMidVector = new G4double[numberOfVariables];
69 fMidError = new G4double[numberOfVariables];
70 if( primary )
71 {
72 fAuxStepper = new G4CashKarpRKF45(EqRhs, numberOfVariables, !primary);
73 }
74}
75
76/////////////////////////////////////////////////////////////////////
77//
78// Destructor
79
81{
82 delete[] ak2;
83 delete[] ak3;
84 delete[] ak4;
85 delete[] ak5;
86 delete[] ak6;
87 // delete[] ak7;
88 delete[] yTemp;
89 delete[] yIn;
90
91 delete[] fLastInitialVector;
92 delete[] fLastFinalVector;
93 delete[] fLastDyDx;
94 delete[] fMidVector;
95 delete[] fMidError;
96
97 delete fAuxStepper;
98}
99
100//////////////////////////////////////////////////////////////////////
101//
102// Given values for n = 6 variables yIn[0,...,n-1]
103// known at x, use the fifth-order Cash-Karp Runge-
104// Kutta-Fehlberg-4-5 method to advance the solution over an interval
105// Step and return the incremented variables as yOut[0,...,n-1]. Also
106// return an estimate of the local truncation error yErr[] using the
107// embedded 4th-order method. The user supplies routine
108// RightHandSide(y,dydx), which returns derivatives dydx for y .
109
110void
112 const G4double dydx[],
113 G4double Step,
114 G4double yOut[],
115 G4double yErr[])
116{
117 // const G4int nvar = 6 ;
118 // const G4double a2 = 0.2 , a3 = 0.3 , a4 = 0.6 , a5 = 1.0 , a6 = 0.875;
119 G4int i;
120
121 const G4double b21 = 0.2 ,
122 b31 = 3.0/40.0 , b32 = 9.0/40.0 ,
123 b41 = 0.3 , b42 = -0.9 , b43 = 1.2 ,
124
125 b51 = -11.0/54.0 , b52 = 2.5 , b53 = -70.0/27.0 ,
126 b54 = 35.0/27.0 ,
127
128 b61 = 1631.0/55296.0 , b62 = 175.0/512.0 ,
129 b63 = 575.0/13824.0 , b64 = 44275.0/110592.0 ,
130 b65 = 253.0/4096.0 ,
131
132 c1 = 37.0/378.0 , c3 = 250.0/621.0 , c4 = 125.0/594.0 ,
133 c6 = 512.0/1771.0 ,
134 dc5 = -277.0/14336.0 ;
135
136 const G4double dc1 = c1 - 2825.0/27648.0 , dc3 = c3 - 18575.0/48384.0 ,
137 dc4 = c4 - 13525.0/55296.0 , dc6 = c6 - 0.25 ;
138
139 // Initialise time to t0, needed when it is not updated by the integration.
140 // [ Note: Only for time dependent fields (usually electric)
141 // is it neccessary to integrate the time.]
142 yOut[7] = yTemp[7] = yIn[7];
143
144 const G4int numberOfVariables= this->GetNumberOfVariables();
145 // The number of variables to be integrated over
146
147 // Saving yInput because yInput and yOut can be aliases for same array
148
149 for(i=0;i<numberOfVariables;i++)
150 {
151 yIn[i]=yInput[i];
152 }
153 // RightHandSide(yIn, dydx) ; // 1st Step
154
155 for(i=0;i<numberOfVariables;i++)
156 {
157 yTemp[i] = yIn[i] + b21*Step*dydx[i] ;
158 }
159 RightHandSide(yTemp, ak2) ; // 2nd Step
160
161 for(i=0;i<numberOfVariables;i++)
162 {
163 yTemp[i] = yIn[i] + Step*(b31*dydx[i] + b32*ak2[i]) ;
164 }
165 RightHandSide(yTemp, ak3) ; // 3rd Step
166
167 for(i=0;i<numberOfVariables;i++)
168 {
169 yTemp[i] = yIn[i] + Step*(b41*dydx[i] + b42*ak2[i] + b43*ak3[i]) ;
170 }
171 RightHandSide(yTemp, ak4) ; // 4th Step
172
173 for(i=0;i<numberOfVariables;i++)
174 {
175 yTemp[i] = yIn[i] + Step*(b51*dydx[i] + b52*ak2[i] + b53*ak3[i] +
176 b54*ak4[i]) ;
177 }
178 RightHandSide(yTemp, ak5) ; // 5th Step
179
180 for(i=0;i<numberOfVariables;i++)
181 {
182 yTemp[i] = yIn[i] + Step*(b61*dydx[i] + b62*ak2[i] + b63*ak3[i] +
183 b64*ak4[i] + b65*ak5[i]) ;
184 }
185 RightHandSide(yTemp, ak6) ; // 6th Step
186
187 for(i=0;i<numberOfVariables;i++)
188 {
189 // Accumulate increments with proper weights
190
191 yOut[i] = yIn[i] + Step*(c1*dydx[i] + c3*ak3[i] + c4*ak4[i] + c6*ak6[i]) ;
192
193 // Estimate error as difference between 4th and
194 // 5th order methods
195
196 yErr[i] = Step*(dc1*dydx[i] + dc3*ak3[i] + dc4*ak4[i] +
197 dc5*ak5[i] + dc6*ak6[i]) ;
198
199 // Store Input and Final values, for possible use in calculating chord
200 fLastInitialVector[i] = yIn[i] ;
201 fLastFinalVector[i] = yOut[i];
202 fLastDyDx[i] = dydx[i];
203 }
204 // NormaliseTangentVector( yOut ); // Not wanted
205
206 fLastStepLength =Step;
207
208 return ;
209}
210
211///////////////////////////////////////////////////////////////////////////////
212
213void
214G4CashKarpRKF45::StepWithEst( const G4double*,
215 const G4double*,
216 G4double,
217 G4double*,
218 G4double&,
219 G4double&,
220 const G4double*,
221 G4double* )
222{
223 G4Exception("G4CashKarpRKF45::StepWithEst()", "GeomField0001",
224 FatalException, "Method no longer used.");
225 return ;
226}
227
228/////////////////////////////////////////////////////////////////
229
231{
232 G4double distLine, distChord;
233 G4ThreeVector initialPoint, finalPoint, midPoint;
234
235 // Store last initial and final points (they will be overwritten in self-Stepper call!)
236 initialPoint = G4ThreeVector( fLastInitialVector[0],
237 fLastInitialVector[1], fLastInitialVector[2]);
238 finalPoint = G4ThreeVector( fLastFinalVector[0],
239 fLastFinalVector[1], fLastFinalVector[2]);
240
241 // Do half a step using StepNoErr
242
243 fAuxStepper->Stepper( fLastInitialVector, fLastDyDx, 0.5 * fLastStepLength,
244 fMidVector, fMidError );
245
246 midPoint = G4ThreeVector( fMidVector[0], fMidVector[1], fMidVector[2]);
247
248 // Use stored values of Initial and Endpoint + new Midpoint to evaluate
249 // distance of Chord
250
251
252 if (initialPoint != finalPoint)
253 {
254 distLine = G4LineSection::Distline( midPoint, initialPoint, finalPoint );
255 distChord = distLine;
256 }
257 else
258 {
259 distChord = (midPoint-initialPoint).mag();
260 }
261 return distChord;
262}
263
264
@ FatalException
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
void Stepper(const G4double y[], const G4double dydx[], G4double h, G4double yout[], G4double yerr[])
G4double DistChord() const
G4CashKarpRKF45(G4EquationOfMotion *EqRhs, G4int numberOfVariables=6, G4bool primary=true)
static G4double Distline(const G4ThreeVector &OtherPnt, const G4ThreeVector &LinePntA, const G4ThreeVector &LinePntB)
G4int GetNumberOfVariables() const
void RightHandSide(const double y[], double dydx[])
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41