Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4AntiProtonAnnihilationAtRest.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4AntiProtonAnnihilationAtRest physics process
27// Larry Felawka (TRIUMF), April 1998
28//---------------------------------------------------------------------
29
30#include <string.h>
31#include <cmath>
32#include <stdio.h>
33
35#include "G4SystemOfUnits.hh"
36#include "G4DynamicParticle.hh"
37#include "G4ParticleTypes.hh"
38#include "Randomize.hh"
41
42#define MAX_SECONDARIES 100
43
44// constructor
45
46G4AntiProtonAnnihilationAtRest::G4AntiProtonAnnihilationAtRest(const G4String& processName,
47 G4ProcessType aType ) :
48 G4VRestProcess (processName, aType), // initialization
49 massPionMinus(G4PionMinus::PionMinus()->GetPDGMass()/GeV),
50 massProton(G4Proton::Proton()->GetPDGMass()/GeV),
51 massPionZero(G4PionZero::PionZero()->GetPDGMass()/GeV),
52 massAntiProton(G4AntiProton::AntiProton()->GetPDGMass()/GeV),
53 massPionPlus(G4PionPlus::PionPlus()->GetPDGMass()/GeV),
54 massGamma(G4Gamma::Gamma()->GetPDGMass()/GeV),
55 pdefGamma(G4Gamma::Gamma()),
56 pdefPionPlus(G4PionPlus::PionPlus()),
57 pdefPionZero(G4PionZero::PionZero()),
58 pdefPionMinus(G4PionMinus::PionMinus()),
59 pdefProton(G4Proton::Proton()),
60 pdefAntiProton(G4AntiProton::AntiProton()),
61 pdefNeutron(G4Neutron::Neutron()),
62 pdefDeuteron(G4Deuteron::Deuteron()),
63 pdefTriton(G4Triton::Triton()),
64 pdefAlpha(G4Alpha::Alpha())
65{
66 G4HadronicDeprecate("G4AntiProtonAnnihilationAtRest");
67 if (verboseLevel>0) {
68 G4cout << GetProcessName() << " is created "<< G4endl;
69 }
74
76}
77
78// destructor
79
81{
83 delete [] pv;
84 delete [] eve;
85 delete [] gkin;
86}
87
89{
91}
92
94{
96}
97
98// methods.............................................................................
99
101 const G4ParticleDefinition& particle
102 )
103{
104 return ( &particle == pdefAntiProton );
105
106}
107
108// Warning - this method may be optimized away if made "inline"
110{
111 return ( ngkine );
112
113}
114
115// Warning - this method may be optimized away if made "inline"
117{
118 return ( &gkin[0] );
119
120}
121
123 const G4Track& track,
125 )
126{
127 // beggining of tracking
129
130 // condition is set to "Not Forced"
132
133 // get mean life time
135
136 if ((currentInteractionLength <0.0) || (verboseLevel>2)){
137 G4cout << "G4AntiProtonAnnihilationAtRestProcess::AtRestGetPhysicalInteractionLength ";
138 G4cout << "[ " << GetProcessName() << "]" <<G4endl;
139 track.GetDynamicParticle()->DumpInfo();
140 G4cout << " in Material " << track.GetMaterial()->GetName() <<G4endl;
141 G4cout << "MeanLifeTime = " << currentInteractionLength/ns << "[ns]" <<G4endl;
142 }
143
145
146}
147
149 const G4Track& track,
150 const G4Step&
151 )
152//
153// Handles AntiProtons at rest; a AntiProton can either create secondaries or
154// do nothing (in which case it should be sent back to decay-handling
155// section
156//
157{
158
159// Initialize ParticleChange
160// all members of G4VParticleChange are set to equal to
161// corresponding member in G4Track
162
164
165// Store some global quantities that depend on current material and particle
166
167 globalTime = track.GetGlobalTime()/s;
168 G4Material * aMaterial = track.GetMaterial();
169 const G4int numberOfElements = aMaterial->GetNumberOfElements();
170 const G4ElementVector* theElementVector = aMaterial->GetElementVector();
171
172 const G4double* theAtomicNumberDensity = aMaterial->GetAtomicNumDensityVector();
173 G4double normalization = 0;
174 for ( G4int i1=0; i1 < numberOfElements; i1++ )
175 {
176 normalization += theAtomicNumberDensity[i1] ; // change when nucleon specific
177 // probabilities are included.
178 }
179 G4double runningSum= 0.;
180 G4double random = G4UniformRand()*normalization;
181 for ( G4int i2=0; i2 < numberOfElements; i2++ )
182 {
183 runningSum += theAtomicNumberDensity[i2]; // change when nucleon specific
184 // probabilities are included.
185 if (random<=runningSum)
186 {
187 targetCharge = G4double((*theElementVector)[i2]->GetZ());
188 targetAtomicMass = (*theElementVector)[i2]->GetN();
189 }
190 }
191 if (random>runningSum)
192 {
193 targetCharge = G4double((*theElementVector)[numberOfElements-1]->GetZ());
194 targetAtomicMass = (*theElementVector)[numberOfElements-1]->GetN();
195
196 }
197
198 if (verboseLevel>1) {
199 G4cout << "G4AntiProtonAnnihilationAtRest::AtRestDoIt is invoked " <<G4endl;
200 }
201
202 G4ParticleMomentum momentum;
203 G4float localtime;
204
206
207 GenerateSecondaries(); // Generate secondaries
208
210
211 for ( G4int isec = 0; isec < ngkine; isec++ ) {
212 G4DynamicParticle* aNewParticle = new G4DynamicParticle;
213 aNewParticle->SetDefinition( gkin[isec].GetParticleDef() );
214 aNewParticle->SetMomentum( gkin[isec].GetMomentum() * GeV );
215
216 localtime = globalTime + gkin[isec].GetTOF();
217
218 G4Track* aNewTrack = new G4Track( aNewParticle, localtime*s, position );
219 aNewTrack->SetTouchableHandle(track.GetTouchableHandle());
220 aParticleChange.AddSecondary( aNewTrack );
221
222 }
223
225
226 aParticleChange.ProposeTrackStatus(fStopAndKill); // Kill the incident AntiProton
227
228// clear InteractionLengthLeft
229
231
232 return &aParticleChange;
233
234}
235
236
237void G4AntiProtonAnnihilationAtRest::GenerateSecondaries()
238{
239 static G4int index;
240 static G4int l;
241 static G4int nopt;
242 static G4int i;
243 // DHW 15 May 2011: unused: static G4ParticleDefinition* jnd;
244
245 for (i = 1; i <= MAX_SECONDARIES; ++i) {
246 pv[i].SetZero();
247 }
248
249 ngkine = 0; // number of generated secondary particles
250 ntot = 0;
251 result.SetZero();
252 result.SetMass( massAntiProton );
253 result.SetKineticEnergyAndUpdate( 0. );
254 result.SetTOF( 0. );
255 result.SetParticleDef( pdefAntiProton );
256
257 AntiProtonAnnihilation(&nopt);
258
259 // *** CHECK WHETHER THERE ARE NEW PARTICLES GENERATED ***
260 if (ntot != 0 || result.GetParticleDef() != pdefAntiProton) {
261 // *** CURRENT PARTICLE IS NOT THE SAME AS IN THE BEGINNING OR/AND ***
262 // *** ONE OR MORE SECONDARIES HAVE BEEN GENERATED ***
263
264 // --- INITIAL PARTICLE TYPE HAS BEEN CHANGED ==> PUT NEW TYPE ON ---
265 // --- THE GEANT TEMPORARY STACK ---
266
267 // --- PUT PARTICLE ON THE STACK ---
268 gkin[0] = result;
269 gkin[0].SetTOF( result.GetTOF() * 5e-11 );
270 ngkine = 1;
271
272 // --- ALL QUANTITIES ARE TAKEN FROM THE GHEISHA STACK WHERE THE ---
273 // --- CONVENTION IS THE FOLLOWING ---
274
275 // --- ONE OR MORE SECONDARIES HAVE BEEN GENERATED ---
276 for (l = 1; l <= ntot; ++l) {
277 index = l - 1;
278 // DHW 15 May 2011: unused: jnd = eve[index].GetParticleDef();
279
280 // --- ADD PARTICLE TO THE STACK IF STACK NOT YET FULL ---
281 if (ngkine < MAX_SECONDARIES) {
282 gkin[ngkine] = eve[index];
283 gkin[ngkine].SetTOF( eve[index].GetTOF() * 5e-11 );
284 ++ngkine;
285 }
286 }
287 }
288 else {
289 // --- NO SECONDARIES GENERATED AND PARTICLE IS STILL THE SAME ---
290 // --- ==> COPY EVERYTHING BACK IN THE CURRENT GEANT STACK ---
291 ngkine = 0;
292 ntot = 0;
293 globalTime += result.GetTOF() * G4float(5e-11);
294 }
295
296 // --- LIMIT THE VALUE OF NGKINE IN CASE OF OVERFLOW ---
297 ngkine = G4int(std::min(ngkine,G4int(MAX_SECONDARIES)));
298
299} // GenerateSecondaries
300
301
302void G4AntiProtonAnnihilationAtRest::Poisso(G4float xav, G4int *iran)
303{
304 static G4int i;
305 static G4float r, p1, p2, p3;
306 static G4int fivex;
307 static G4float rr, ran, rrr, ran1;
308
309 // *** GENERATION OF POISSON DISTRIBUTION ***
310 // *** NVE 16-MAR-1988 CERN GENEVA ***
311 // ORIGIN : H.FESEFELDT (27-OCT-1983)
312
313 // --- USE NORMAL DISTRIBUTION FOR <X> > 9.9 ---
314 if (xav > G4float(9.9)) {
315 // ** NORMAL DISTRIBUTION WITH SIGMA**2 = <X>
316 Normal(&ran1);
317 ran1 = xav + ran1 * std::sqrt(xav);
318 *iran = G4int(ran1);
319 if (*iran < 0) {
320 *iran = 0;
321 }
322 }
323 else {
324 fivex = G4int(xav * G4float(5.));
325 *iran = 0;
326 if (fivex > 0) {
327 r = std::exp(-G4double(xav));
328 ran1 = G4UniformRand();
329 if (ran1 > r) {
330 rr = r;
331 for (i = 1; i <= fivex; ++i) {
332 ++(*iran);
333 if (i <= 5) {
334 rrr = std::pow(xav, G4float(i)) / NFac(i);
335 }
336 // ** STIRLING' S FORMULA FOR LARGE NUMBERS
337 if (i > 5) {
338 rrr = std::exp(i * std::log(xav) -
339 (i + G4float(.5)) * std::log(i * G4float(1.)) +
340 i - G4float(.9189385));
341 }
342 rr += r * rrr;
343 if (ran1 <= rr) {
344 break;
345 }
346 }
347 }
348 }
349 else {
350 // ** FOR VERY SMALL XAV TRY IRAN=1,2,3
351 p1 = xav * std::exp(-G4double(xav));
352 p2 = xav * p1 / G4float(2.);
353 p3 = xav * p2 / G4float(3.);
354 ran = G4UniformRand();
355 if (ran >= p3) {
356 if (ran >= p2) {
357 if (ran >= p1) {
358 *iran = 0;
359 }
360 else {
361 *iran = 1;
362 }
363 }
364 else {
365 *iran = 2;
366 }
367 }
368 else {
369 *iran = 3;
370 }
371 }
372 }
373
374} // Poisso
375
376
377G4int G4AntiProtonAnnihilationAtRest::NFac(G4int n)
378{
379 G4int ret_val;
380
381 static G4int i, j;
382
383 // *** NVE 16-MAR-1988 CERN GENEVA ***
384 // ORIGIN : H.FESEFELDT (27-OCT-1983)
385
386 ret_val = 1;
387 j = n;
388 if (j > 1) {
389 if (j > 10) {
390 j = 10;
391 }
392 for (i = 2; i <= j; ++i) {
393 ret_val *= i;
394 }
395 }
396 return ret_val;
397
398} // NFac
399
400
401void G4AntiProtonAnnihilationAtRest::Normal(G4float *ran)
402{
403 static G4int i;
404
405 // *** NVE 14-APR-1988 CERN GENEVA ***
406 // ORIGIN : H.FESEFELDT (27-OCT-1983)
407
408 *ran = G4float(-6.);
409 for (i = 1; i <= 12; ++i) {
410 *ran += G4UniformRand();
411 }
412
413} // Normal
414
415
416void G4AntiProtonAnnihilationAtRest::AntiProtonAnnihilation(G4int *nopt)
417{
418 static G4float brr[3] = { G4float(.125),G4float(.25),G4float(.5) };
419
420 G4float r__1;
421
422 static G4int i, ii, kk;
423 static G4int nt;
424 static G4float cfa, eka;
425 static G4int ika, nbl;
426 static G4float ran, pcm;
427 static G4int isw;
428 static G4float tex;
429 static G4ParticleDefinition* ipa1;
430 static G4float ran1, ran2, ekin, tkin;
431 static G4float targ;
432 static G4ParticleDefinition* inve;
433 static G4float ekin1, ekin2, black;
434 static G4float pnrat, rmnve1, rmnve2;
435 static G4float ek, en;
436
437 // *** ANTI PROTON ANNIHILATION AT REST ***
438 // *** NVE 04-MAR-1988 CERN GENEVA ***
439 // ORIGIN : H.FESEFELDT (09-JULY-1987)
440
441 // NOPT=0 NO ANNIHILATION
442 // NOPT=1 ANNIH.IN PI+ PI-
443 // NOPT=2 ANNIH.IN PI0 PI0
444 // NOPT=3 ANNIH.IN PI- PI0
445 // NOPT=4 ANNIH.IN GAMMA GAMMA
446
447 pv[1].SetZero();
448 pv[1].SetMass( massAntiProton );
449 pv[1].SetKineticEnergyAndUpdate( 0. );
450 pv[1].SetTOF( result.GetTOF() );
451 pv[1].SetParticleDef( result.GetParticleDef() );
452 isw = 1;
453 ran = G4UniformRand();
454 if (ran > brr[0]) {
455 isw = 2;
456 }
457 if (ran > brr[1]) {
458 isw = 3;
459 }
460 if (ran > brr[2]) {
461 isw = 4;
462 }
463 *nopt = isw;
464 // **
465 // ** EVAPORATION
466 // **
467 if (isw == 1) {
468 rmnve1 = massPionPlus;
469 rmnve2 = massPionMinus;
470 }
471 else if (isw == 2) {
472 rmnve1 = massPionZero;
473 rmnve2 = massPionZero;
474 }
475 else if (isw == 3) {
476 rmnve1 = massPionMinus;
477 rmnve2 = massPionZero;
478 }
479 else if (isw == 4) {
480 rmnve1 = massGamma;
481 rmnve2 = massGamma;
482 }
483 ek = massProton + massAntiProton - rmnve1 - rmnve2;
484 tkin = ExNu(ek);
485 ek -= tkin;
486 if (ek < G4float(1e-4)) {
487 ek = G4float(1e-4);
488 }
489 ek *= G4float(.5);
490 en = ek + (rmnve1 + rmnve2) * G4float(.5);
491 r__1 = en * en - rmnve1 * rmnve2;
492 pcm = r__1 > 0 ? std::sqrt(r__1) : 0;
493 pv[2].SetZero();
494 pv[2].SetMass( rmnve1 );
495 pv[3].SetZero();
496 pv[3].SetMass( rmnve2 );
497 if (isw > 3) {
498 pv[2].SetMass( 0. );
499 pv[3].SetMass( 0. );
500 }
501 pv[2].SetEnergyAndUpdate( std::sqrt(pv[2].GetMass()*pv[2].GetMass()+pcm*pcm) );
502 pv[2].SetTOF( result.GetTOF() );
503 pv[3].SetEnergy( std::sqrt(pv[3].GetMass()*pv[3].GetMass()+pcm*pcm) );
504 pv[3].SetMomentumAndUpdate( -pv[2].GetMomentum().x(), -pv[2].GetMomentum().y(), -pv[2].GetMomentum().z() );
505 pv[3].SetTOF( result.GetTOF() );
506 switch ((int)isw) {
507 case 1:
508 pv[2].SetParticleDef( pdefPionPlus );
509 pv[3].SetParticleDef( pdefPionMinus );
510 break;
511 case 2:
512 pv[2].SetParticleDef( pdefPionZero );
513 pv[3].SetParticleDef( pdefPionZero );
514 break;
515 case 3:
516 pv[2].SetParticleDef( pdefPionMinus );
517 pv[3].SetParticleDef( pdefPionZero );
518 break;
519 case 4:
520 pv[2].SetParticleDef( pdefGamma );
521 pv[3].SetParticleDef( pdefGamma );
522 break;
523 default:
524 break;
525 }
526 nt = 3;
527 if (targetAtomicMass >= G4float(1.5)) {
528 cfa = (targetAtomicMass - G4float(1.)) /
529 G4float(120.) * G4float(.025) *
530 std::exp(-G4double(targetAtomicMass - G4float(1.)) / G4float(120.));
531 targ = G4float(1.);
532 tex = evapEnergy1;
533 if (tex >= G4float(.001)) {
534 black = (targ * G4float(1.25) +
535 G4float(1.5)) * evapEnergy1 / (evapEnergy1 + evapEnergy3);
536 Poisso(black, &nbl);
537 if (G4float(G4int(targ) + nbl) > targetAtomicMass) {
538 nbl = G4int(targetAtomicMass - targ);
539 }
540 if (nt + nbl > (MAX_SECONDARIES - 2)) {
541 nbl = (MAX_SECONDARIES - 2) - nt;
542 }
543 if (nbl > 0) {
544 ekin = tex / nbl;
545 ekin2 = G4float(0.);
546 for (i = 1; i <= nbl; ++i) {
547 if (nt == (MAX_SECONDARIES - 2)) {
548 continue;
549 }
550 if (ekin2 > tex) {
551 break;
552 }
553 ran1 = G4UniformRand();
554 Normal(&ran2);
555 ekin1 = -G4double(ekin) * std::log(ran1) -
556 cfa * (ran2 * G4float(.5) + G4float(1.));
557 if (ekin1 < G4float(0.)) {
558 ekin1 = std::log(ran1) * G4float(-.01);
559 }
560 ekin1 *= G4float(1.);
561 ekin2 += ekin1;
562 if (ekin2 > tex) {
563 ekin1 = tex - (ekin2 - ekin1);
564 }
565 if (ekin1 < G4float(0.)) {
566 ekin1 = G4float(.001);
567 }
568 ipa1 = pdefNeutron;
569 pnrat = G4float(1.) - targetCharge / targetAtomicMass;
570 if (G4UniformRand() > pnrat) {
571 ipa1 = pdefProton;
572 }
573 ++nt;
574 pv[nt].SetZero();
575 pv[nt].SetMass( ipa1->GetPDGMass()/GeV );
576 pv[nt].SetKineticEnergyAndUpdate( ekin1 );
577 pv[nt].SetTOF( result.GetTOF() );
578 pv[nt].SetParticleDef( ipa1 );
579 }
580 if (targetAtomicMass >= G4float(230.) && ek <= G4float(2.)) {
581 ii = nt + 1;
582 kk = 0;
583 eka = ek;
584 if (eka > G4float(1.)) {
585 eka *= eka;
586 }
587 if (eka < G4float(.1)) {
588 eka = G4float(.1);
589 }
590 ika = G4int(G4float(3.6) / eka);
591 for (i = 1; i <= nt; ++i) {
592 --ii;
593 if (pv[ii].GetParticleDef() != pdefProton) {
594 continue;
595 }
596 ipa1 = pdefNeutron;
597 pv[ii].SetMass( ipa1->GetPDGMass()/GeV );
598 pv[ii].SetParticleDef( ipa1 );
599 ++kk;
600 if (kk > ika) {
601 break;
602 }
603 }
604 }
605 }
606 }
607 // **
608 // ** THEN ALSO DEUTERONS, TRITONS AND ALPHAS
609 // **
610 tex = evapEnergy3;
611 if (tex >= G4float(.001)) {
612 black = (targ * G4float(1.25) + G4float(1.5)) * evapEnergy3 /
613 (evapEnergy1 + evapEnergy3);
614 Poisso(black, &nbl);
615 if (nt + nbl > (MAX_SECONDARIES - 2)) {
616 nbl = (MAX_SECONDARIES - 2) - nt;
617 }
618 if (nbl > 0) {
619 ekin = tex / nbl;
620 ekin2 = G4float(0.);
621 for (i = 1; i <= nbl; ++i) {
622 if (nt == (MAX_SECONDARIES - 2)) {
623 continue;
624 }
625 if (ekin2 > tex) {
626 break;
627 }
628 ran1 = G4UniformRand();
629 Normal(&ran2);
630 ekin1 = -G4double(ekin) * std::log(ran1) -
631 cfa * (ran2 * G4float(.5) + G4float(1.));
632 if (ekin1 < G4float(0.)) {
633 ekin1 = std::log(ran1) * G4float(-.01);
634 }
635 ekin1 *= G4float(1.);
636 ekin2 += ekin1;
637 if (ekin2 > tex) {
638 ekin1 = tex - (ekin2 - ekin1);
639 }
640 if (ekin1 < G4float(0.)) {
641 ekin1 = G4float(.001);
642 }
643 ran = G4UniformRand();
644 inve = pdefDeuteron;
645 if (ran > G4float(.6)) {
646 inve = pdefTriton;
647 }
648 if (ran > G4float(.9)) {
649 inve = pdefAlpha;
650 }
651 ++nt;
652 pv[nt].SetZero();
653 pv[nt].SetMass( inve->GetPDGMass()/GeV );
654 pv[nt].SetKineticEnergyAndUpdate( ekin1 );
655 pv[nt].SetTOF( result.GetTOF() );
656 pv[nt].SetParticleDef( inve );
657 }
658 }
659 }
660 }
661 result = pv[2];
662 if (nt == 2) {
663 return;
664 }
665 for (i = 3; i <= nt; ++i) {
666 if (ntot >= MAX_SECONDARIES) {
667 return;
668 }
669 eve[ntot++] = pv[i];
670 }
671
672} // AntiProtonAnnihilation
673
674
675G4double G4AntiProtonAnnihilationAtRest::ExNu(G4float ek1)
676{
677 G4float ret_val, r__1;
678
679 static G4float cfa, gfa, ran1, ran2, ekin1, atno3;
680 static G4int magic;
681 static G4float fpdiv;
682
683 // *** NUCLEAR EVAPORATION AS FUNCTION OF ATOMIC NUMBER ATNO ***
684 // *** AND KINETIC ENERGY EKIN OF PRIMARY PARTICLE ***
685 // *** NVE 04-MAR-1988 CERN GENEVA ***
686 // ORIGIN : H.FESEFELDT (10-DEC-1986)
687
688 ret_val = G4float(0.);
689 if (targetAtomicMass >= G4float(1.5)) {
690 magic = 0;
691 if (G4int(targetCharge + G4float(.1)) == 82) {
692 magic = 1;
693 }
694 ekin1 = ek1;
695 if (ekin1 < G4float(.1)) {
696 ekin1 = G4float(.1);
697 }
698 if (ekin1 > G4float(4.)) {
699 ekin1 = G4float(4.);
700 }
701 // ** 0.35 VALUE AT 1 GEV
702 // ** 0.05 VALUE AT 0.1 GEV
703 cfa = G4float(.13043478260869565);
704 cfa = cfa * std::log(ekin1) + G4float(.35);
705 if (cfa < G4float(.15)) {
706 cfa = G4float(.15);
707 }
708 ret_val = cfa * G4float(7.716) * std::exp(-G4double(cfa));
709 atno3 = targetAtomicMass;
710 if (atno3 > G4float(120.)) {
711 atno3 = G4float(120.);
712 }
713 cfa = (atno3 - G4float(1.)) /
714 G4float(120.) * std::exp(-G4double(atno3 - G4float(1.)) / G4float(120.));
715 ret_val *= cfa;
716 r__1 = ekin1;
717 fpdiv = G4float(1.) - r__1 * r__1 * G4float(.25);
718 if (fpdiv < G4float(.5)) {
719 fpdiv = G4float(.5);
720 }
721 gfa = (targetAtomicMass - G4float(1.)) /
722 G4float(70.) * G4float(2.) *
723 std::exp(-G4double(targetAtomicMass - G4float(1.)) / G4float(70.));
724 evapEnergy1 = ret_val * fpdiv;
725 evapEnergy3 = ret_val - evapEnergy1;
726 Normal(&ran1);
727 Normal(&ran2);
728 if (magic == 1) {
729 ran1 = G4float(0.);
730 ran2 = G4float(0.);
731 }
732 evapEnergy1 *= ran1 * gfa + G4float(1.);
733 if (evapEnergy1 < G4float(0.)) {
734 evapEnergy1 = G4float(0.);
735 }
736 evapEnergy3 *= ran2 * gfa + G4float(1.);
737 if (evapEnergy3 < G4float(0.)) {
738 evapEnergy3 = G4float(0.);
739 }
740 while ((ret_val = evapEnergy1 + evapEnergy3) >= ek1) {
741 evapEnergy1 *= G4float(1.) - G4UniformRand() * G4float(.5);
742 evapEnergy3 *= G4float(1.) - G4UniformRand() * G4float(.5);
743 }
744 }
745 return ret_val;
746
747} // ExNu
#define MAX_SECONDARIES
std::vector< G4Element * > G4ElementVector
G4double condition(const G4ErrorSymMatrix &m)
G4ForceCondition
@ NotForced
#define G4HadronicDeprecate(name)
@ fHadronAtRest
G4ProcessType
@ fStopAndKill
double G4double
Definition: G4Types.hh:64
float G4float
Definition: G4Types.hh:65
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
G4VParticleChange * AtRestDoIt(const G4Track &, const G4Step &)
void PreparePhysicsTable(const G4ParticleDefinition &)
G4bool IsApplicable(const G4ParticleDefinition &)
void BuildPhysicsTable(const G4ParticleDefinition &)
G4double GetMeanLifeTime(const G4Track &, G4ForceCondition *)
G4double AtRestGetPhysicalInteractionLength(const G4Track &, G4ForceCondition *)
void DumpInfo(G4int mode=0) const
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetMomentum(const G4ThreeVector &momentum)
void SetEnergyAndUpdate(G4double e)
G4ParticleDefinition * GetParticleDef()
void SetParticleDef(G4ParticleDefinition *c)
void SetMomentumAndUpdate(G4ParticleMomentum mom)
void SetKineticEnergyAndUpdate(G4double ekin)
void DeRegisterExtraProcess(G4VProcess *)
void RegisterExtraProcess(G4VProcess *)
void RegisterParticleForExtraProcess(G4VProcess *, const G4ParticleDefinition *)
static G4HadronicProcessStore * Instance()
void PrintInfo(const G4ParticleDefinition *)
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:189
size_t GetNumberOfElements() const
Definition: G4Material.hh:185
const G4double * GetAtomicNumDensityVector() const
Definition: G4Material.hh:215
const G4String & GetName() const
Definition: G4Material.hh:177
void AddSecondary(G4Track *aSecondary)
virtual void Initialize(const G4Track &)
Definition: G4Step.hh:78
const G4ThreeVector & GetPosition() const
void SetTouchableHandle(const G4TouchableHandle &apValue)
G4double GetGlobalTime() const
G4Material * GetMaterial() const
const G4DynamicParticle * GetDynamicParticle() const
const G4TouchableHandle & GetTouchableHandle() const
void ProposeTrackStatus(G4TrackStatus status)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
void SetNumberOfSecondaries(G4int totSecondaries)
G4double currentInteractionLength
Definition: G4VProcess.hh:297
virtual void ResetNumberOfInteractionLengthLeft()
Definition: G4VProcess.cc:92
G4ParticleChange aParticleChange
Definition: G4VProcess.hh:289
G4int verboseLevel
Definition: G4VProcess.hh:368
G4double theNumberOfInteractionLengthLeft
Definition: G4VProcess.hh:293
void SetProcessSubType(G4int)
Definition: G4VProcess.hh:403
const G4String & GetProcessName() const
Definition: G4VProcess.hh:379
#define ns
Definition: xmlparse.cc:597