Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4GaussLaguerreQ Class Reference

#include <G4GaussLaguerreQ.hh>

+ Inheritance diagram for G4GaussLaguerreQ:

Public Member Functions

 G4GaussLaguerreQ (function pFunction, G4double alpha, G4int nLaguerre)
 
G4double Integral () const
 
- Public Member Functions inherited from G4VGaussianQuadrature
 G4VGaussianQuadrature (function pFunction)
 
virtual ~G4VGaussianQuadrature ()
 
G4double GetAbscissa (G4int index) const
 
G4double GetWeight (G4int index) const
 
G4int GetNumber () const
 

Additional Inherited Members

- Protected Member Functions inherited from G4VGaussianQuadrature
G4double GammaLogarithm (G4double xx)
 
- Protected Attributes inherited from G4VGaussianQuadrature
function fFunction
 
G4doublefAbscissa
 
G4doublefWeight
 
G4int fNumber
 

Detailed Description

Definition at line 68 of file G4GaussLaguerreQ.hh.

Constructor & Destructor Documentation

◆ G4GaussLaguerreQ()

G4GaussLaguerreQ::G4GaussLaguerreQ ( function  pFunction,
G4double  alpha,
G4int  nLaguerre 
)

Definition at line 42 of file G4GaussLaguerreQ.cc.

45 : G4VGaussianQuadrature(pFunction)
46{
47 const G4double tolerance = 1.0e-10 ;
48 const G4int maxNumber = 12 ;
49 G4int i=1, k=1 ;
50 G4double newton0=0.0, newton1=0.0,
51 temp1=0.0, temp2=0.0, temp3=0.0, temp=0.0, cofi=0.0 ;
52
53 fNumber = nLaguerre ;
55 fWeight = new G4double[fNumber] ;
56
57 for(i=1;i<=fNumber;i++) // Loop over the desired roots
58 {
59 if(i == 1)
60 {
61 newton0 = (1.0 + alpha)*(3.0 + 0.92*alpha)
62 / (1.0 + 2.4*fNumber + 1.8*alpha) ;
63 }
64 else if(i == 2)
65 {
66 newton0 += (15.0 + 6.25*alpha)/(1.0 + 0.9*alpha + 2.5*fNumber) ;
67 }
68 else
69 {
70 cofi = i - 2 ;
71 newton0 += ((1.0+2.55*cofi)/(1.9*cofi)
72 + 1.26*cofi*alpha/(1.0+3.5*cofi))
73 * (newton0 - fAbscissa[i-3])/(1.0 + 0.3*alpha) ;
74 }
75 for(k=1;k<=maxNumber;k++)
76 {
77 temp1 = 1.0 ;
78 temp2 = 0.0 ;
79 for(G4int j=1;j<=fNumber;j++)
80 {
81 temp3 = temp2 ;
82 temp2 = temp1 ;
83 temp1 = ((2*j - 1 + alpha - newton0)*temp2
84 - (j - 1 + alpha)*temp3)/j ;
85 }
86 temp = (fNumber*temp1 - (fNumber +alpha)*temp2)/newton0 ;
87 newton1 = newton0 ;
88 newton0 = newton1 - temp1/temp ;
89 if(std::fabs(newton0 - newton1) <= tolerance)
90 {
91 break ;
92 }
93 }
94 if(k > maxNumber)
95 {
96 G4Exception("G4GaussLaguerreQ::G4GaussLaguerreQ()",
97 "OutOfRange", FatalException,
98 "Too many iterations in Gauss-Laguerre constructor") ;
99 }
100
101 fAbscissa[i-1] = newton0 ;
102 fWeight[i-1] = -std::exp(GammaLogarithm(alpha + fNumber)
103 - GammaLogarithm((G4double)fNumber))/(temp*fNumber*temp2) ;
104 }
105}
@ FatalException
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
G4double GammaLogarithm(G4double xx)
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41

Member Function Documentation

◆ Integral()

G4double G4GaussLaguerreQ::Integral ( ) const

Definition at line 116 of file G4GaussLaguerreQ.cc.

117{
118 G4double integral = 0.0 ;
119 for(G4int i=0;i<fNumber;i++)
120 {
121 integral += fWeight[i]*fFunction(fAbscissa[i]) ;
122 }
123 return integral ;
124}

The documentation for this class was generated from the following files: