Geant4
9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4GaussLaguerreQ.hh
Go to the documentation of this file.
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
//
27
// $Id$
28
//
29
// Class description:
30
//
31
// Class for realization of Gauss-Laguerre quadrature method
32
// Roots of ortogonal polynoms and corresponding weights are calculated based on
33
// iteration method (by bisection Newton algorithm). Constant values for initial
34
// approximations were derived from the book: M. Abramowitz, I. Stegun, Handbook
35
// of mathematical functions, DOVER Publications INC, New York 1965 ; chapters 9,
36
// 10, and 22 .
37
//
38
// ---------------------------------------------------------------------------
39
//
40
// Constructor for Gauss-Laguerre quadrature method: integral from zero to
41
// infinity of std::pow(x,alpha)*std::exp(-x)*f(x). The value of nLaguerre sets the accuracy.
42
// The constructor creates arrays fAbscissa[0,..,nLaguerre-1] and
43
// fWeight[0,..,nLaguerre-1] . The function GaussLaguerre(f) should be called
44
// then with any f .
45
//
46
// G4GaussLaguerreQ( function pFunction,
47
// G4double alpha,
48
// G4int nLaguerre )
49
//
50
//
51
// -------------------------------------------------------------------------
52
//
53
// Gauss-Laguerre method for integration of std::pow(x,alpha)*std::exp(-x)*pFunction(x)
54
// from zero up to infinity. pFunction is evaluated in fNumber points for which
55
// fAbscissa[i] and fWeight[i] arrays were created in constructor
56
//
57
// G4double Integral() const
58
59
// ------------------------------- HISTORY --------------------------------
60
//
61
// 13.05.97 V.Grichine (
[email protected]
62
63
#ifndef G4GAUSSLAGUERREQ_HH
64
#define G4GAUSSLAGUERREQ_HH
65
66
#include "
G4VGaussianQuadrature.hh
"
67
68
class
G4GaussLaguerreQ
:
public
G4VGaussianQuadrature
69
{
70
public
:
71
G4GaussLaguerreQ
(
function
pFunction,
72
G4double
alpha,
73
G4int
nLaguerre ) ;
74
75
// Methods
76
77
G4double
Integral
()
const
;
78
79
private
:
80
81
G4GaussLaguerreQ
(
const
G4GaussLaguerreQ
&);
82
G4GaussLaguerreQ
& operator=(
const
G4GaussLaguerreQ
&);
83
};
84
85
#endif
function
G4double(* function)(G4double)
Definition:
G4ChebyshevApproximation.hh:126
G4double
double G4double
Definition:
G4Types.hh:64
G4int
int G4int
Definition:
G4Types.hh:66
G4VGaussianQuadrature.hh
G4GaussLaguerreQ
Definition:
G4GaussLaguerreQ.hh:69
G4GaussLaguerreQ::Integral
G4double Integral() const
Definition:
G4GaussLaguerreQ.cc:116
G4VGaussianQuadrature
Definition:
G4VGaussianQuadrature.hh:67
geant4-v9.6.0
source
global
HEPNumerics
include
G4GaussLaguerreQ.hh
Generated by
1.9.6