Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4eIonisationCrossSectionHandler.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// -------------------------------------------------------------------
29//
30// GEANT4 Class file
31//
32//
33// File name: G4eIonisationCrossSectionHandler
34//
35// Author: V.Ivanchenko ([email protected])
36//
37// Creation date: 25 Sept 2001
38//
39// Modifications:
40// 10 Oct 2001 M.G. Pia Revision to improve code quality and consistency with design
41// 19 Jul 2002 VI Create composite data set for material
42// 21 Jan 2003 V.Ivanchenko Cut per region
43// 28 Jan 2009 L.Pandola Added public method to make a easier migration of
44// G4LowEnergyIonisation to G4LivermoreIonisationModel
45// 15 Jul 2009 Nicolas A. Karakatsanis
46//
47// - BuildCrossSectionForMaterials method was revised in order to calculate the
48// logarithmic values of the loaded data.
49// It retrieves the data values from the G4EMLOW data files but, then, calculates the
50// respective log values and loads them to seperate data structures.
51// The EM data sets, initialized this way, contain both non-log and log values.
52// These initialized data sets can enhance the computing performance of data interpolation
53// operations
54//
55//
56//
57// -------------------------------------------------------------------
58
60#include "G4SystemOfUnits.hh"
61#include "G4VEnergySpectrum.hh"
62#include "G4DataVector.hh"
67#include "G4VEMDataSet.hh"
68#include "G4EMDataSet.hh"
69#include "G4Material.hh"
71
72
74 const G4VEnergySpectrum* spec, G4VDataSetAlgorithm* alg,
75 G4double emin, G4double emax, G4int nbin)
77 theParam(spec),verbose(0)
78{
79 G4VCrossSectionHandler::Initialise(alg, emin, emax, nbin);
80 interp = new G4LinLogLogInterpolation();
81}
82
83
85{
86 delete interp;
87}
88
89
91 const G4DataVector& energyVector,
92 const G4DataVector* energyCuts)
93{
94 std::vector<G4VEMDataSet*>* set = new std::vector<G4VEMDataSet*>;
95
96 G4DataVector* energies;
97 G4DataVector* cs;
98
99 G4DataVector* log_energies;
100 G4DataVector* log_cs;
101
102 G4int nOfBins = energyVector.size();
103
104 const G4ProductionCutsTable* theCoupleTable=
106 size_t numOfCouples = theCoupleTable->GetTableSize();
107
108 for (size_t mLocal=0; mLocal<numOfCouples; mLocal++) {
109
110 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(mLocal);
111 const G4Material* material= couple->GetMaterial();
112 const G4ElementVector* elementVector = material->GetElementVector();
113 const G4double* nAtomsPerVolume = material->GetAtomicNumDensityVector();
114 G4int nElements = material->GetNumberOfElements();
115
116 if(verbose > 0)
117 {
118 G4cout << "eIonisation CS for " << mLocal << "th material "
119 << material->GetName()
120 << " eEl= " << nElements << G4endl;
121 }
122
123 G4double tcut = (*energyCuts)[mLocal];
124
125 G4VDataSetAlgorithm* algo = interp->Clone();
126 G4VEMDataSet* setForMat = new G4CompositeEMDataSet(algo,1.,1.);
127
128 for (G4int i=0; i<nElements; i++) {
129
130 G4int Z = (G4int) (*elementVector)[i]->GetZ();
131 G4int nShells = NumberOfComponents(Z);
132
133 energies = new G4DataVector;
134 cs = new G4DataVector;
135
136 log_energies = new G4DataVector;
137 log_cs = new G4DataVector;
138
139 G4double density = nAtomsPerVolume[i];
140
141 for (G4int bin=0; bin<nOfBins; bin++) {
142
143 G4double e = energyVector[bin];
144 energies->push_back(e);
145 log_energies->push_back(std::log10(e));
146 G4double value = 0.0;
147 G4double log_value = -300;
148
149 if(e > tcut) {
150 for (G4int n=0; n<nShells; n++) {
151 G4double cross = FindValue(Z, e, n);
152 G4double p = theParam->Probability(Z, tcut, e, e, n);
153 value += cross * p * density;
154
155 if(verbose>0 && mLocal == 0 && e>=1. && e<=0.)
156 {
157 G4cout << "G4eIonCrossSH: e(MeV)= " << e/MeV
158 << " n= " << n
159 << " cross= " << cross
160 << " p= " << p
161 << " value= " << value
162 << " tcut(MeV)= " << tcut/MeV
163 << " rho= " << density
164 << " Z= " << Z
165 << G4endl;
166 }
167
168 }
169 if (value == 0.) value = 1e-300;
170 log_value = std::log10(value);
171 }
172 cs->push_back(value);
173 log_cs->push_back(log_value);
174 }
175 G4VDataSetAlgorithm* algoLocal = interp->Clone();
176
177 //G4VEMDataSet* elSet = new G4EMDataSet(i,energies,cs,algoLocal,1.,1.);
178
179 G4VEMDataSet* elSet = new G4EMDataSet(i,energies,cs,log_energies,log_cs,algoLocal,1.,1.);
180
181 setForMat->AddComponent(elSet);
182 }
183 set->push_back(setForMat);
184 }
185
186 return set;
187}
188
190 G4double cutEnergy,
191 G4int Z)
192{
193 G4int nShells = NumberOfComponents(Z);
194 G4double value = 0.;
195 if(energy > cutEnergy)
196 {
197 for (G4int n=0; n<nShells; n++) {
198 G4double cross = FindValue(Z, energy, n);
199 G4double p = theParam->Probability(Z, cutEnergy, energy, energy, n);
200 value += cross * p;
201 }
202 }
203 return value;
204}
std::vector< G4Element * > G4ElementVector
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
const G4Material * GetMaterial() const
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:189
size_t GetNumberOfElements() const
Definition: G4Material.hh:185
const G4double * GetAtomicNumDensityVector() const
Definition: G4Material.hh:215
const G4String & GetName() const
Definition: G4Material.hh:177
const G4MaterialCutsCouple * GetMaterialCutsCouple(G4int i) const
static G4ProductionCutsTable * GetProductionCutsTable()
G4double FindValue(G4int Z, G4double e) const
G4int NumberOfComponents(G4int Z) const
void Initialise(G4VDataSetAlgorithm *interpolation=0, G4double minE=250 *CLHEP::eV, G4double maxE=100 *CLHEP::GeV, G4int numberOfBins=200, G4double unitE=CLHEP::MeV, G4double unitData=CLHEP::barn, G4int minZ=1, G4int maxZ=99)
virtual G4VDataSetAlgorithm * Clone() const =0
virtual void AddComponent(G4VEMDataSet *dataSet)=0
virtual G4double Probability(G4int Z, G4double minKineticEnergy, G4double maxKineticEnergy, G4double kineticEnergy, G4int shell=0, const G4ParticleDefinition *pd=0) const =0
G4double GetCrossSectionAboveThresholdForElement(G4double energy, G4double cutEnergy, G4int Z)
G4eIonisationCrossSectionHandler(const G4VEnergySpectrum *spec, G4VDataSetAlgorithm *alg, G4double emin, G4double emax, G4int nbin)
std::vector< G4VEMDataSet * > * BuildCrossSectionsForMaterials(const G4DataVector &energyVector, const G4DataVector *energyCuts)