Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LivermoreNuclearGammaConversionModel Class Reference

#include <G4LivermoreNuclearGammaConversionModel.hh>

+ Inheritance diagram for G4LivermoreNuclearGammaConversionModel:

Public Member Functions

 G4LivermoreNuclearGammaConversionModel (const G4ParticleDefinition *p=0, const G4String &nam="LivermoreNuclearGammaConversion")
 
virtual ~G4LivermoreNuclearGammaConversionModel ()
 
virtual void Initialise (const G4ParticleDefinition *, const G4DataVector &)
 
virtual G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX)
 
virtual void SampleSecondaries (std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
 
- Public Member Functions inherited from G4VEmModel
 G4VEmModel (const G4String &nam)
 
virtual ~G4VEmModel ()
 
virtual void Initialise (const G4ParticleDefinition *, const G4DataVector &)=0
 
virtual void SampleSecondaries (std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin=0.0, G4double tmax=DBL_MAX)=0
 
virtual G4double ComputeDEDXPerVolume (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=DBL_MAX)
 
virtual G4double CrossSectionPerVolume (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
virtual G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0., G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
virtual G4double ChargeSquareRatio (const G4Track &)
 
virtual G4double GetChargeSquareRatio (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual G4double GetParticleCharge (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual void StartTracking (G4Track *)
 
virtual void CorrectionsAlongStep (const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double &eloss, G4double &niel, G4double length)
 
virtual G4double Value (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy)
 
virtual G4double MinPrimaryEnergy (const G4Material *, const G4ParticleDefinition *)
 
virtual void SetupForMaterial (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual void DefineForRegion (const G4Region *)
 
void InitialiseElementSelectors (const G4ParticleDefinition *, const G4DataVector &)
 
G4double ComputeDEDX (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=DBL_MAX)
 
G4double CrossSection (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4double ComputeMeanFreePath (const G4ParticleDefinition *, G4double kineticEnergy, const G4Material *, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, const G4Element *, G4double kinEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4int SelectIsotopeNumber (const G4Element *)
 
const G4ElementSelectRandomAtom (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementSelectRandomAtom (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
void SetParticleChange (G4VParticleChange *, G4VEmFluctuationModel *f=0)
 
void SetCrossSectionTable (G4PhysicsTable *)
 
G4PhysicsTableGetCrossSectionTable ()
 
G4VEmFluctuationModelGetModelOfFluctuations ()
 
G4VEmAngularDistributionGetAngularDistribution ()
 
void SetAngularDistribution (G4VEmAngularDistribution *)
 
G4double HighEnergyLimit () const
 
G4double LowEnergyLimit () const
 
G4double HighEnergyActivationLimit () const
 
G4double LowEnergyActivationLimit () const
 
G4double PolarAngleLimit () const
 
G4double SecondaryThreshold () const
 
G4bool LPMFlag () const
 
G4bool DeexcitationFlag () const
 
G4bool ForceBuildTableFlag () const
 
void SetHighEnergyLimit (G4double)
 
void SetLowEnergyLimit (G4double)
 
void SetActivationHighEnergyLimit (G4double)
 
void SetActivationLowEnergyLimit (G4double)
 
G4bool IsActive (G4double kinEnergy)
 
void SetPolarAngleLimit (G4double)
 
void SetSecondaryThreshold (G4double)
 
void SetLPMFlag (G4bool val)
 
void SetDeexcitationFlag (G4bool val)
 
void ForceBuildTable (G4bool val)
 
G4double MaxSecondaryKinEnergy (const G4DynamicParticle *dynParticle)
 
const G4StringGetName () const
 
void SetCurrentCouple (const G4MaterialCutsCouple *)
 
const G4ElementGetCurrentElement () const
 

Protected Member Functions

G4double GetMeanFreePath (const G4Track &aTrack, G4double previousStepSize, G4ForceCondition *condition)
 
- Protected Member Functions inherited from G4VEmModel
G4ParticleChangeForLossGetParticleChangeForLoss ()
 
G4ParticleChangeForGammaGetParticleChangeForGamma ()
 
virtual G4double MaxSecondaryEnergy (const G4ParticleDefinition *, G4double kineticEnergy)
 
const G4MaterialCutsCoupleCurrentCouple () const
 
void SetCurrentElement (const G4Element *)
 

Protected Attributes

G4ParticleChangeForGammafParticleChange
 
- Protected Attributes inherited from G4VEmModel
G4VParticleChangepParticleChange
 
G4PhysicsTablexSectionTable
 
const std::vector< G4double > * theDensityFactor
 
const std::vector< G4int > * theDensityIdx
 

Detailed Description

Definition at line 43 of file G4LivermoreNuclearGammaConversionModel.hh.

Constructor & Destructor Documentation

◆ G4LivermoreNuclearGammaConversionModel()

G4LivermoreNuclearGammaConversionModel::G4LivermoreNuclearGammaConversionModel ( const G4ParticleDefinition p = 0,
const G4String nam = "LivermoreNuclearGammaConversion" 
)

Definition at line 41 of file G4LivermoreNuclearGammaConversionModel.cc.

43 :G4VEmModel(nam),fParticleChange(0),smallEnergy(2.*MeV),
44 isInitialised(false),
45 crossSectionHandler(0),meanFreePathTable(0)
46{
47 lowEnergyLimit = 2.0*electron_mass_c2;
48 highEnergyLimit = 100 * GeV;
49 SetHighEnergyLimit(highEnergyLimit);
50
51 verboseLevel= 0;
52 // Verbosity scale:
53 // 0 = nothing
54 // 1 = warning for energy non-conservation
55 // 2 = details of energy budget
56 // 3 = calculation of cross sections, file openings, sampling of atoms
57 // 4 = entering in methods
58
59 if(verboseLevel > 0) {
60 G4cout << "Livermore Nuclear Gamma conversion is constructed " << G4endl
61 << "Energy range: "
62 << lowEnergyLimit / MeV << " MeV - "
63 << highEnergyLimit / GeV << " GeV"
64 << G4endl;
65 }
66}
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:585

◆ ~G4LivermoreNuclearGammaConversionModel()

G4LivermoreNuclearGammaConversionModel::~G4LivermoreNuclearGammaConversionModel ( )
virtual

Definition at line 70 of file G4LivermoreNuclearGammaConversionModel.cc.

71{
72 if (crossSectionHandler) delete crossSectionHandler;
73}

Member Function Documentation

◆ ComputeCrossSectionPerAtom()

G4double G4LivermoreNuclearGammaConversionModel::ComputeCrossSectionPerAtom ( const G4ParticleDefinition ,
G4double  kinEnergy,
G4double  Z,
G4double  A = 0,
G4double  cut = 0,
G4double  emax = DBL_MAX 
)
virtual

Reimplemented from G4VEmModel.

Definition at line 121 of file G4LivermoreNuclearGammaConversionModel.cc.

125{
126 if (verboseLevel > 3) {
127 G4cout << "Calling ComputeCrossSectionPerAtom() of G4LivermoreNuclearGammaConversionModel"
128 << G4endl;
129 }
130 if (GammaEnergy < lowEnergyLimit || GammaEnergy > highEnergyLimit) return 0;
131
132 G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy);
133 return cs;
134}
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
G4double FindValue(G4int Z, G4double e) const

◆ GetMeanFreePath()

G4double G4LivermoreNuclearGammaConversionModel::GetMeanFreePath ( const G4Track aTrack,
G4double  previousStepSize,
G4ForceCondition condition 
)
protected

◆ Initialise()

void G4LivermoreNuclearGammaConversionModel::Initialise ( const G4ParticleDefinition ,
const G4DataVector  
)
virtual

Implements G4VEmModel.

Definition at line 78 of file G4LivermoreNuclearGammaConversionModel.cc.

80{
81 if (verboseLevel > 3)
82 G4cout << "Calling G4LivermoreNuclearGammaConversionModel::Initialise()" << G4endl;
83
84 if (crossSectionHandler)
85 {
86 crossSectionHandler->Clear();
87 delete crossSectionHandler;
88 }
89
90 // Read data tables for all materials
91
92 crossSectionHandler = new G4CrossSectionHandler();
93 crossSectionHandler->Initialise(0,lowEnergyLimit,100.*GeV,400);
94 G4String crossSectionFile = "pairdata/pp-pair-cs-"; // here only pair in nuclear field cs should be used
95 crossSectionHandler->LoadData(crossSectionFile);
96
97 //
98
99 if (verboseLevel > 0) {
100 G4cout << "Loaded cross section files for Livermore GammaConversion" << G4endl;
101 G4cout << "To obtain the total cross section this should be used only " << G4endl
102 << "in connection with G4ElectronGammaConversion " << G4endl;
103 }
104
105 if (verboseLevel > 0) {
106 G4cout << "Livermore Nuclear Gamma Conversion model is initialized " << G4endl
107 << "Energy range: "
108 << LowEnergyLimit() / MeV << " MeV - "
109 << HighEnergyLimit() / GeV << " GeV"
110 << G4endl;
111 }
112
113 if(isInitialised) return;
115 isInitialised = true;
116}
void LoadData(const G4String &dataFile)
void Initialise(G4VDataSetAlgorithm *interpolation=0, G4double minE=250 *CLHEP::eV, G4double maxE=100 *CLHEP::GeV, G4int numberOfBins=200, G4double unitE=CLHEP::MeV, G4double unitData=CLHEP::barn, G4int minZ=1, G4int maxZ=99)
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:109
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:529
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:522

◆ SampleSecondaries()

void G4LivermoreNuclearGammaConversionModel::SampleSecondaries ( std::vector< G4DynamicParticle * > *  fvect,
const G4MaterialCutsCouple couple,
const G4DynamicParticle aDynamicGamma,
G4double  tmin,
G4double  maxEnergy 
)
virtual

Implements G4VEmModel.

Definition at line 138 of file G4LivermoreNuclearGammaConversionModel.cc.

143{
144
145// The energies of the e+ e- secondaries are sampled using the Bethe - Heitler
146// cross sections with Coulomb correction. A modified version of the random
147// number techniques of Butcher & Messel is used (Nuc Phys 20(1960),15).
148
149// Note 1 : Effects due to the breakdown of the Born approximation at low
150// energy are ignored.
151// Note 2 : The differential cross section implicitly takes account of
152// pair creation in both nuclear and atomic electron fields. However triplet
153// prodution is not generated.
154
155 if (verboseLevel > 3)
156 G4cout << "Calling SampleSecondaries() of G4LivermoreNuclearGammaConversionModel" << G4endl;
157
158 G4double photonEnergy = aDynamicGamma->GetKineticEnergy();
159 G4ParticleMomentum photonDirection = aDynamicGamma->GetMomentumDirection();
160
161 G4double epsilon ;
162 G4double epsilon0Local = electron_mass_c2 / photonEnergy ;
163
164 // Do it fast if photon energy < 2. MeV
165 if (photonEnergy < smallEnergy )
166 {
167 epsilon = epsilon0Local + (0.5 - epsilon0Local) * G4UniformRand();
168 }
169 else
170 {
171 // Select randomly one element in the current material
172 //const G4Element* element = crossSectionHandler->SelectRandomElement(couple,photonEnergy);
173 const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition();
174 const G4Element* element = SelectRandomAtom(couple,particle,photonEnergy);
175
176 if (element == 0)
177 {
178 G4cout << "G4LivermoreNuclearGammaConversionModel::SampleSecondaries - element = 0"
179 << G4endl;
180 return;
181 }
182 G4IonisParamElm* ionisation = element->GetIonisation();
183 if (ionisation == 0)
184 {
185 G4cout << "G4LivermoreNuclearGammaConversionModel::SampleSecondaries - ionisation = 0"
186 << G4endl;
187 return;
188 }
189
190 // Extract Coulomb factor for this Element
191 G4double fZ = 8. * (ionisation->GetlogZ3());
192 if (photonEnergy > 50. * MeV) fZ += 8. * (element->GetfCoulomb());
193
194 // Limits of the screening variable
195 G4double screenFactor = 136. * epsilon0Local / (element->GetIonisation()->GetZ3()) ;
196 G4double screenMax = std::exp ((42.24 - fZ)/8.368) - 0.952 ;
197 G4double screenMin = std::min(4.*screenFactor,screenMax) ;
198
199 // Limits of the energy sampling
200 G4double epsilon1 = 0.5 - 0.5 * std::sqrt(1. - screenMin / screenMax) ;
201 G4double epsilonMin = std::max(epsilon0Local,epsilon1);
202 G4double epsilonRange = 0.5 - epsilonMin ;
203
204 // Sample the energy rate of the created electron (or positron)
205 G4double screen;
206 G4double gReject ;
207
208 G4double f10 = ScreenFunction1(screenMin) - fZ;
209 G4double f20 = ScreenFunction2(screenMin) - fZ;
210 G4double normF1 = std::max(f10 * epsilonRange * epsilonRange,0.);
211 G4double normF2 = std::max(1.5 * f20,0.);
212
213 do {
214 if (normF1 / (normF1 + normF2) > G4UniformRand() )
215 {
216 epsilon = 0.5 - epsilonRange * std::pow(G4UniformRand(), 0.3333) ;
217 screen = screenFactor / (epsilon * (1. - epsilon));
218 gReject = (ScreenFunction1(screen) - fZ) / f10 ;
219 }
220 else
221 {
222 epsilon = epsilonMin + epsilonRange * G4UniformRand();
223 screen = screenFactor / (epsilon * (1 - epsilon));
224 gReject = (ScreenFunction2(screen) - fZ) / f20 ;
225 }
226 } while ( gReject < G4UniformRand() );
227
228 } // End of epsilon sampling
229
230 // Fix charges randomly
231
232 G4double electronTotEnergy;
233 G4double positronTotEnergy;
234
235 if (G4int(2*G4UniformRand()))
236 {
237 electronTotEnergy = (1. - epsilon) * photonEnergy;
238 positronTotEnergy = epsilon * photonEnergy;
239 }
240 else
241 {
242 positronTotEnergy = (1. - epsilon) * photonEnergy;
243 electronTotEnergy = epsilon * photonEnergy;
244 }
245
246 // Scattered electron (positron) angles. ( Z - axis along the parent photon)
247 // Universal distribution suggested by L. Urban (Geant3 manual (1993) Phys211),
248 // derived from Tsai distribution (Rev. Mod. Phys. 49, 421 (1977)
249
250 G4double u;
251 const G4double a1 = 0.625;
252 G4double a2 = 3. * a1;
253 // G4double d = 27. ;
254
255 // if (9. / (9. + d) > G4UniformRand())
256 if (0.25 > G4UniformRand())
257 {
258 u = - std::log(G4UniformRand() * G4UniformRand()) / a1 ;
259 }
260 else
261 {
262 u = - std::log(G4UniformRand() * G4UniformRand()) / a2 ;
263 }
264
265 G4double thetaEle = u*electron_mass_c2/electronTotEnergy;
266 G4double thetaPos = u*electron_mass_c2/positronTotEnergy;
267 G4double phi = twopi * G4UniformRand();
268
269 G4double dxEle= std::sin(thetaEle)*std::cos(phi),dyEle= std::sin(thetaEle)*std::sin(phi),dzEle=std::cos(thetaEle);
270 G4double dxPos=-std::sin(thetaPos)*std::cos(phi),dyPos=-std::sin(thetaPos)*std::sin(phi),dzPos=std::cos(thetaPos);
271
272
273 // Kinematics of the created pair:
274 // the electron and positron are assumed to have a symetric angular
275 // distribution with respect to the Z axis along the parent photon
276
277 G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ;
278
279 // SI - The range test has been removed wrt original G4LowEnergyGammaconversion class
280
281 G4ThreeVector electronDirection (dxEle, dyEle, dzEle);
282 electronDirection.rotateUz(photonDirection);
283
285 electronDirection,
286 electronKineEnergy);
287
288 // The e+ is always created (even with kinetic energy = 0) for further annihilation
289 G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ;
290
291 // SI - The range test has been removed wrt original G4LowEnergyGammaconversion class
292
293 G4ThreeVector positronDirection (dxPos, dyPos, dzPos);
294 positronDirection.rotateUz(photonDirection);
295
296 // Create G4DynamicParticle object for the particle2
298 positronDirection, positronKineEnergy);
299 // Fill output vector
300
301 fvect->push_back(particle1);
302 fvect->push_back(particle2);
303
304 // kill incident photon
307
308}
@ fStopAndKill
#define G4UniformRand()
Definition: Randomize.hh:53
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
static G4Electron * Electron()
Definition: G4Electron.cc:94
G4double GetfCoulomb() const
Definition: G4Element.hh:201
G4IonisParamElm * GetIonisation() const
Definition: G4Element.hh:209
G4double GetlogZ3() const
G4double GetZ3() const
void SetProposedKineticEnergy(G4double proposedKinEnergy)
static G4Positron * Positron()
Definition: G4Positron.cc:94
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:459
void ProposeTrackStatus(G4TrackStatus status)

Member Data Documentation

◆ fParticleChange

G4ParticleChangeForGamma* G4LivermoreNuclearGammaConversionModel::fParticleChange
protected

Definition at line 71 of file G4LivermoreNuclearGammaConversionModel.hh.

Referenced by Initialise(), and SampleSecondaries().


The documentation for this class was generated from the following files: