Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
RandBinomial.cc
Go to the documentation of this file.
1// $Id:$
2// -*- C++ -*-
3//
4// -----------------------------------------------------------------------
5// HEP Random
6// --- RandBinomial ---
7// class implementation file
8// -----------------------------------------------------------------------
9
10// =======================================================================
11// John Marraffino - Created: 12th May 1998
12// M Fischler - put and get to/from streams 12/10/04
13// M Fischler - put/get to/from streams uses pairs of ulongs when
14// + storing doubles avoid problems with precision
15// 4/14/05
16//
17// =======================================================================
18
21#include <algorithm> // for min() and max()
22#include <cmath> // for exp()
23
24namespace CLHEP {
25
26std::string RandBinomial::name() const {return "RandBinomial";}
27HepRandomEngine & RandBinomial::engine() {return *localEngine;}
28
30}
31
32double RandBinomial::shoot( HepRandomEngine *anEngine, long n,
33 double p ) {
34 return genBinomial( anEngine, n, p );
35}
36
37double RandBinomial::shoot( long n, double p ) {
39 return genBinomial( anEngine, n, p );
40}
41
42double RandBinomial::fire( long n, double p ) {
43 return genBinomial( localEngine.get(), n, p );
44}
45
46void RandBinomial::shootArray( const int size, double* vect,
47 long n, double p )
48{
49 for( double* v = vect; v != vect+size; ++v )
50 *v = shoot(n,p);
51}
52
54 const int size, double* vect,
55 long n, double p )
56{
57 for( double* v = vect; v != vect+size; ++v )
58 *v = shoot(anEngine,n,p);
59}
60
61void RandBinomial::fireArray( const int size, double* vect)
62{
63 for( double* v = vect; v != vect+size; ++v )
64 *v = fire(defaultN,defaultP);
65}
66
67void RandBinomial::fireArray( const int size, double* vect,
68 long n, double p )
69{
70 for( double* v = vect; v != vect+size; ++v )
71 *v = fire(n,p);
72}
73
74/*************************************************************************
75 * *
76 * StirlingCorrection() *
77 * *
78 * Correction term of the Stirling approximation for log(k!) *
79 * (series in 1/k, or table values for small k) *
80 * with long int parameter k *
81 * *
82 *************************************************************************
83 * *
84 * log k! = (k + 1/2)log(k + 1) - (k + 1) + (1/2)log(2Pi) + *
85 * StirlingCorrection(k + 1) *
86 * *
87 * log k! = (k + 1/2)log(k) - k + (1/2)log(2Pi) + *
88 * StirlingCorrection(k) *
89 * *
90 *************************************************************************/
91
92static double StirlingCorrection(long int k)
93{
94 #define C1 8.33333333333333333e-02 // +1/12
95 #define C3 -2.77777777777777778e-03 // -1/360
96 #define C5 7.93650793650793651e-04 // +1/1260
97 #define C7 -5.95238095238095238e-04 // -1/1680
98
99 static double c[31] = { 0.0,
100 8.106146679532726e-02, 4.134069595540929e-02,
101 2.767792568499834e-02, 2.079067210376509e-02,
102 1.664469118982119e-02, 1.387612882307075e-02,
103 1.189670994589177e-02, 1.041126526197209e-02,
104 9.255462182712733e-03, 8.330563433362871e-03,
105 7.573675487951841e-03, 6.942840107209530e-03,
106 6.408994188004207e-03, 5.951370112758848e-03,
107 5.554733551962801e-03, 5.207655919609640e-03,
108 4.901395948434738e-03, 4.629153749334029e-03,
109 4.385560249232324e-03, 4.166319691996922e-03,
110 3.967954218640860e-03, 3.787618068444430e-03,
111 3.622960224683090e-03, 3.472021382978770e-03,
112 3.333155636728090e-03, 3.204970228055040e-03,
113 3.086278682608780e-03, 2.976063983550410e-03,
114 2.873449362352470e-03, 2.777674929752690e-03,
115 };
116 double r, rr;
117
118 if (k > 30L) {
119 r = 1.0 / (double) k; rr = r * r;
120 return(r*(C1 + rr*(C3 + rr*(C5 + rr*C7))));
121 }
122 else return(c[k]);
123}
124
125double RandBinomial::genBinomial( HepRandomEngine *anEngine, long n, double p )
126{
127/******************************************************************
128 * *
129 * Binomial-Distribution - Acceptance Rejection/Inversion *
130 * *
131 ******************************************************************
132 * *
133 * Acceptance Rejection method combined with Inversion for *
134 * generating Binomial random numbers with parameters *
135 * n (number of trials) and p (probability of success). *
136 * For min(n*p,n*(1-p)) < 10 the Inversion method is applied: *
137 * The random numbers are generated via sequential search, *
138 * starting at the lowest index k=0. The cumulative probabilities *
139 * are avoided by using the technique of chop-down. *
140 * For min(n*p,n*(1-p)) >= 10 Acceptance Rejection is used: *
141 * The algorithm is based on a hat-function which is uniform in *
142 * the centre region and exponential in the tails. *
143 * A triangular immediate acceptance region in the centre speeds *
144 * up the generation of binomial variates. *
145 * If candidate k is near the mode, f(k) is computed recursively *
146 * starting at the mode m. *
147 * The acceptance test by Stirling's formula is modified *
148 * according to W. Hoermann (1992): The generation of binomial *
149 * random variates, to appear in J. Statist. Comput. Simul. *
150 * If p < .5 the algorithm is applied to parameters n, p. *
151 * Otherwise p is replaced by 1-p, and k is replaced by n - k. *
152 * *
153 ******************************************************************
154 * *
155 * FUNCTION: - btpec samples a random number from the binomial *
156 * distribution with parameters n and p and is *
157 * valid for n*min(p,1-p) > 0. *
158 * REFERENCE: - V. Kachitvichyanukul, B.W. Schmeiser (1988): *
159 * Binomial random variate generation, *
160 * Communications of the ACM 31, 216-222. *
161 * SUBPROGRAMS: - StirlingCorrection() *
162 * ... Correction term of the Stirling *
163 * approximation for log(k!) *
164 * (series in 1/k or table values *
165 * for small k) with long int k *
166 * - anEngine ... Pointer to a (0,1)-Uniform *
167 * engine *
168 * *
169 * Implemented by H. Zechner and P. Busswald, September 1992 *
170 ******************************************************************/
171
172#define C1_3 0.33333333333333333
173#define C5_8 0.62500000000000000
174#define C1_6 0.16666666666666667
175#define DMAX_KM 20L
176
177 static long int n_last = -1L, n_prev = -1L;
178 static double par,np,p0,q,p_last = -1.0, p_prev = -1.0;
179 static long b,m,nm;
180 static double pq, rc, ss, xm, xl, xr, ll, lr, c,
181 p1, p2, p3, p4, ch;
182
183 long bh,i, K, Km, nK;
184 double f, rm, U, V, X, T, E;
185
186 if (n != n_last || p != p_last) // set-up
187 {
188 n_last = n;
189 p_last = p;
190 par=std::min(p,1.0-p);
191 q=1.0-par;
192 np = n*par;
193
194// Check for invalid input values
195
196 if( np <= 0.0 ) return (-1.0);
197
198 rm = np + par;
199 m = (long int) rm; // mode, integer
200 if (np<10)
201 {
202 p0=std::exp(n*std::log(q)); // Chop-down
203 bh=(long int)(np+10.0*std::sqrt(np*q));
204 b=std::min(n,bh);
205 }
206 else
207 {
208 rc = (n + 1.0) * (pq = par / q); // recurr. relat.
209 ss = np * q; // variance
210 i = (long int) (2.195*std::sqrt(ss) - 4.6*q); // i = p1 - 0.5
211 xm = m + 0.5;
212 xl = (double) (m - i); // limit left
213 xr = (double) (m + i + 1L); // limit right
214 f = (rm - xl) / (rm - xl*par); ll = f * (1.0 + 0.5*f);
215 f = (xr - rm) / (xr * q); lr = f * (1.0 + 0.5*f);
216 c = 0.134 + 20.5/(15.3 + (double) m); // parallelogram
217 // height
218 p1 = i + 0.5;
219 p2 = p1 * (1.0 + c + c); // probabilities
220 p3 = p2 + c/ll; // of regions 1-4
221 p4 = p3 + c/lr;
222 }
223 }
224 if (np<10) //Inversion Chop-down
225 {
226 double pk;
227
228 K=0;
229 pk=p0;
230 U=anEngine->flat();
231 while (U>pk)
232 {
233 ++K;
234 if (K>b)
235 {
236 U=anEngine->flat();
237 K=0;
238 pk=p0;
239 }
240 else
241 {
242 U-=pk;
243 pk=(double)(((n-K+1)*par*pk)/(K*q));
244 }
245 }
246 return ((p>0.5) ? (double)(n-K):(double)K);
247 }
248
249 for (;;)
250 {
251 V = anEngine->flat();
252 if ((U = anEngine->flat() * p4) <= p1) // triangular region
253 {
254 K=(long int) (xm - U + p1*V);
255 return ((p>0.5) ? (double)(n-K):(double)K); // immediate accept
256 }
257 if (U <= p2) // parallelogram
258 {
259 X = xl + (U - p1)/c;
260 if ((V = V*c + 1.0 - std::fabs(xm - X)/p1) >= 1.0) continue;
261 K = (long int) X;
262 }
263 else if (U <= p3) // left tail
264 {
265 if ((X = xl + std::log(V)/ll) < 0.0) continue;
266 K = (long int) X;
267 V *= (U - p2) * ll;
268 }
269 else // right tail
270 {
271 if ((K = (long int) (xr - std::log(V)/lr)) > n) continue;
272 V *= (U - p3) * lr;
273 }
274
275 // acceptance test : two cases, depending on |K - m|
276 if ((Km = std::labs(K - m)) <= DMAX_KM || Km + Km + 2L >= ss)
277 {
278
279 // computation of p(K) via recurrence relationship from the mode
280 f = 1.0; // f(m)
281 if (m < K)
282 {
283 for (i = m; i < K; )
284 {
285 if ((f *= (rc / ++i - pq)) < V) break; // multiply f
286 }
287 }
288 else
289 {
290 for (i = K; i < m; )
291 {
292 if ((V *= (rc / ++i - pq)) > f) break; // multiply V
293 }
294 }
295 if (V <= f) break; // acceptance test
296 }
297 else
298 {
299
300 // lower and upper squeeze tests, based on lower bounds for log p(K)
301 V = std::log(V);
302 T = - Km * Km / (ss + ss);
303 E = (Km / ss) * ((Km * (Km * C1_3 + C5_8) + C1_6) / ss + 0.5);
304 if (V <= T - E) break;
305 if (V <= T + E)
306 {
307 if (n != n_prev || par != p_prev)
308 {
309 n_prev = n;
310 p_prev = par;
311
312 nm = n - m + 1L;
313 ch = xm * std::log((m + 1.0)/(pq * nm)) +
314 StirlingCorrection(m + 1L) + StirlingCorrection(nm);
315 }
316 nK = n - K + 1L;
317
318 // computation of log f(K) via Stirling's formula
319 // final acceptance-rejection test
320 if (V <= ch + (n + 1.0)*std::log((double) nm / (double) nK) +
321 (K + 0.5)*std::log(nK * pq / (K + 1.0)) -
322 StirlingCorrection(K + 1L) - StirlingCorrection(nK)) break;
323 }
324 }
325 }
326 return ((p>0.5) ? (double)(n-K):(double)K);
327}
328
329std::ostream & RandBinomial::put ( std::ostream & os ) const {
330 int pr=os.precision(20);
331 std::vector<unsigned long> t(2);
332 os << " " << name() << "\n";
333 os << "Uvec" << "\n";
334 t = DoubConv::dto2longs(defaultP);
335 os << defaultN << " " << defaultP << " " << t[0] << " " << t[1] << "\n";
336 os.precision(pr);
337 return os;
338}
339
340std::istream & RandBinomial::get ( std::istream & is ) {
341 std::string inName;
342 is >> inName;
343 if (inName != name()) {
344 is.clear(std::ios::badbit | is.rdstate());
345 std::cerr << "Mismatch when expecting to read state of a "
346 << name() << " distribution\n"
347 << "Name found was " << inName
348 << "\nistream is left in the badbit state\n";
349 return is;
350 }
351 if (possibleKeywordInput(is, "Uvec", defaultN)) {
352 std::vector<unsigned long> t(2);
353 is >> defaultN >> defaultP;
354 is >> t[0] >> t[1]; defaultP = DoubConv::longs2double(t);
355 return is;
356 }
357 // is >> defaultN encompassed by possibleKeywordInput
358 is >> defaultP;
359 return is;
360}
361
362
363} // namespace CLHEP
#define C5_8
#define C5
#define C1
#define C1_6
#define C3
#define C1_3
#define DMAX_KM
#define C7
static double longs2double(const std::vector< unsigned long > &v)
Definition: DoubConv.cc:114
static std::vector< unsigned long > dto2longs(double d)
Definition: DoubConv.cc:98
static HepRandomEngine * getTheEngine()
Definition: Random.cc:165
std::string name() const
Definition: RandBinomial.cc:26
HepRandomEngine & engine()
Definition: RandBinomial.cc:27
static double shoot()
void fireArray(const int size, double *vect)
Definition: RandBinomial.cc:61
static void shootArray(const int size, double *vect, long n=1, double p=0.5)
Definition: RandBinomial.cc:46
virtual ~RandBinomial()
Definition: RandBinomial.cc:29
std::ostream & put(std::ostream &os) const
std::istream & get(std::istream &is)
Definition: DoubConv.h:17
bool possibleKeywordInput(IS &is, const std::string &key, T &t)
Definition: RandomEngine.h:167