Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LENDElastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26
27#include "G4LENDElastic.hh"
29#include "G4SystemOfUnits.hh"
30#include "G4Nucleus.hh"
31#include "G4ParticleTable.hh"
32
34{
35
36 G4double temp = aTrack.GetMaterial()->GetTemperature();
37
38 //G4int iZ = int ( aTarg.GetZ() );
39 //G4int iA = int ( aTarg.GetN() );
40 //migrate to integer A and Z (GetN_asInt returns number of neutrons in the nucleus since this)
41 G4int iZ = aTarg.GetZ_asInt();
42 G4int iA = aTarg.GetA_asInt();
43
44 G4double ke = aTrack.GetKineticEnergy();
45
46 //G4HadFinalState* theResult = new G4HadFinalState();
48 theResult->Clear();
49
50 G4GIDI_target* aTarget = usedTarget_map.find( lend_manager->GetNucleusEncoding( iZ , iA ) )->second->GetTarget();
51 G4double aMu = aTarget->getElasticFinalState( ke*MeV, temp, NULL, NULL );
52
53 G4double phi = twopi*G4UniformRand();
54 G4double theta = std::acos( aMu );
55 //G4double sinth = std::sin( theta );
56
57 G4ReactionProduct theNeutron( const_cast<G4ParticleDefinition *>( aTrack.GetDefinition() ) );
58 theNeutron.SetMomentum( aTrack.Get4Momentum().vect() );
59 theNeutron.SetKineticEnergy( ke );
60
61//G4cout << "iZ " << iZ << " iA " << iA << G4endl;
62
63 G4ReactionProduct theTarget( G4ParticleTable::GetParticleTable()->FindIon( iZ , iA , 0 , iZ ) );
64
65 G4double mass = G4ParticleTable::GetParticleTable()->FindIon( iZ , iA , 0 , iZ )->GetPDGMass();
66
67// add Thermal motion
68 G4double kT = k_Boltzmann*temp;
69 G4ThreeVector v ( G4RandGauss::shoot() * std::sqrt( kT*mass )
70 , G4RandGauss::shoot() * std::sqrt( kT*mass )
71 , G4RandGauss::shoot() * std::sqrt( kT*mass ) );
72 theTarget.SetMomentum( v );
73
74 G4ThreeVector the3Neutron = theNeutron.GetMomentum();
75 G4double nEnergy = theNeutron.GetTotalEnergy();
76 G4ThreeVector the3Target = theTarget.GetMomentum();
77 G4double tEnergy = theTarget.GetTotalEnergy();
78 G4ReactionProduct theCMS;
79 G4double totE = nEnergy+tEnergy;
80 G4ThreeVector the3CMS = the3Target+the3Neutron;
81 theCMS.SetMomentum(the3CMS);
82 G4double cmsMom = std::sqrt(the3CMS*the3CMS);
83 G4double sqrts = std::sqrt((totE-cmsMom)*(totE+cmsMom));
84 theCMS.SetMass(sqrts);
85 theCMS.SetTotalEnergy(totE);
86
87 theNeutron.Lorentz(theNeutron, theCMS);
88 theTarget.Lorentz(theTarget, theCMS);
89 G4double en = theNeutron.GetTotalMomentum(); // already in CMS.
90 G4ThreeVector cms3Mom=theNeutron.GetMomentum(); // for neutron direction in CMS
91 G4double cms_theta=cms3Mom.theta();
92 G4double cms_phi=cms3Mom.phi();
93 G4ThreeVector tempVector;
94 tempVector.setX( std::cos(theta)*std::sin(cms_theta)*std::cos(cms_phi)
95 +std::sin(theta)*std::cos(phi)*std::cos(cms_theta)*std::cos(cms_phi)
96 -std::sin(theta)*std::sin(phi)*std::sin(cms_phi) );
97 tempVector.setY( std::cos(theta)*std::sin(cms_theta)*std::sin(cms_phi)
98 +std::sin(theta)*std::cos(phi)*std::cos(cms_theta)*std::sin(cms_phi)
99 +std::sin(theta)*std::sin(phi)*std::cos(cms_phi) );
100 tempVector.setZ( std::cos(theta)*std::cos(cms_theta)
101 -std::sin(theta)*std::cos(phi)*std::sin(cms_theta) );
102 tempVector *= en;
103 theNeutron.SetMomentum(tempVector);
104 theTarget.SetMomentum(-tempVector);
105 G4double tP = theTarget.GetTotalMomentum();
106 G4double tM = theTarget.GetMass();
107 theTarget.SetTotalEnergy(std::sqrt((tP+tM)*(tP+tM)-2.*tP*tM));
108
109
110 theNeutron.Lorentz(theNeutron, -1.*theCMS);
111
112//110913 Add Protection for very low energy (1e-6eV) scattering
113 if ( theNeutron.GetKineticEnergy() <= 0 )
114 {
115 theNeutron.SetTotalEnergy ( theNeutron.GetMass() * ( 1 + std::pow( 10 , -15.65 ) ) );
116 }
117
118 theTarget.Lorentz(theTarget, -1.*theCMS);
119 if ( theTarget.GetKineticEnergy() < 0 )
120 {
121 theTarget.SetTotalEnergy ( theTarget.GetMass() * ( 1 + std::pow( 10 , -15.65 ) ) );
122 }
123//110913 END
124
125 theTarget.Lorentz(theTarget, -1.*theCMS);
126
127 theResult->SetEnergyChange(theNeutron.GetKineticEnergy());
128 theResult->SetMomentumChange(theNeutron.GetMomentum().unit());
129 G4DynamicParticle* theRecoil = new G4DynamicParticle;
130
131// theRecoil->SetDefinition( ionTable->GetIon( iZ , iA ) );
132 theRecoil->SetDefinition( G4ParticleTable::GetParticleTable()->FindIon( iZ, iA , 0, iZ ));
133 theRecoil->SetMomentum( theTarget.GetMomentum() );
134
135 theResult->AddSecondary( theRecoil );
136
137 return theResult;
138
139}
140
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
double phi() const
double theta() const
void setY(double)
void setZ(double)
void setX(double)
Hep3Vector vect() const
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetMomentum(const G4ThreeVector &momentum)
double getElasticFinalState(double e_in, double temperature, double(*rng)(void *), void *rngState)
void AddSecondary(G4DynamicParticle *aP)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &aTargetNucleus)
G4int GetNucleusEncoding(G4int iZ, G4int iA)
std::map< G4int, G4LENDUsedTarget * > usedTarget_map
Definition: G4LENDModel.hh:79
G4LENDManager * lend_manager
Definition: G4LENDModel.hh:78
G4double GetTemperature() const
Definition: G4Material.hh:181
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
G4ParticleDefinition * FindIon(G4int atomicNumber, G4int atomicMass, G4double excitationEnergy)
static G4ParticleTable * GetParticleTable()
void SetMomentum(const G4double x, const G4double y, const G4double z)
void SetTotalEnergy(const G4double en)
G4double GetTotalMomentum() const
G4double GetKineticEnergy() const
G4double GetTotalEnergy() const
G4ThreeVector GetMomentum() const
void Lorentz(const G4ReactionProduct &p1, const G4ReactionProduct &p2)
void SetKineticEnergy(const G4double en)
G4double GetMass() const
void SetMass(const G4double mas)