Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LENDElastic Class Reference

#include <G4LENDElastic.hh>

+ Inheritance diagram for G4LENDElastic:

Public Member Functions

 G4LENDElastic (G4ParticleDefinition *pd)
 
 ~G4LENDElastic ()
 
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &aTargetNucleus)
 
- Public Member Functions inherited from G4LENDModel
 G4LENDModel (G4String name="LENDModel")
 
 ~G4LENDModel ()
 
virtual G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &aTargetNucleus)
 
void ChangeDefaultEvaluation (G4String name)
 
void AllowNaturalAbundanceTarget ()
 
void AllowAnyCandidateTarget ()
 
void BuildPhysicsTable (const G4ParticleDefinition &)
 
- Public Member Functions inherited from G4HadronicInteraction
 G4HadronicInteraction (const G4String &modelName="HadronicModel")
 
virtual ~G4HadronicInteraction ()
 
virtual G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)=0
 
virtual G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
virtual G4bool IsApplicable (const G4HadProjectile &, G4Nucleus &)
 
G4double GetMinEnergy () const
 
G4double GetMinEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMinEnergy (G4double anEnergy)
 
void SetMinEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMinEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4double GetMaxEnergy () const
 
G4double GetMaxEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMaxEnergy (const G4double anEnergy)
 
void SetMaxEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMaxEnergy (G4double anEnergy, const G4Material *aMaterial)
 
const G4HadronicInteractionGetMyPointer () const
 
G4int GetVerboseLevel () const
 
void SetVerboseLevel (G4int value)
 
const G4StringGetModelName () const
 
void DeActivateFor (const G4Material *aMaterial)
 
void ActivateFor (const G4Material *aMaterial)
 
void DeActivateFor (const G4Element *anElement)
 
void ActivateFor (const G4Element *anElement)
 
G4bool IsBlocked (const G4Material *aMaterial) const
 
G4bool IsBlocked (const G4Element *anElement) const
 
void SetRecoilEnergyThreshold (G4double val)
 
G4double GetRecoilEnergyThreshold () const
 
G4bool operator== (const G4HadronicInteraction &right) const
 
G4bool operator!= (const G4HadronicInteraction &right) const
 
virtual const std::pair< G4double, G4doubleGetFatalEnergyCheckLevels () const
 
virtual std::pair< G4double, G4doubleGetEnergyMomentumCheckLevels () const
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 
virtual void ModelDescription (std::ostream &outFile) const
 

Additional Inherited Members

- Protected Member Functions inherited from G4LENDModel
void create_used_target_map ()
 
void recreate_used_target_map ()
 
- Protected Member Functions inherited from G4HadronicInteraction
void SetModelName (const G4String &nam)
 
G4bool IsBlocked () const
 
void Block ()
 
- Protected Attributes inherited from G4LENDModel
G4ParticleDefinitionproj
 
G4LENDManagerlend_manager
 
std::map< G4int, G4LENDUsedTarget * > usedTarget_map
 
- Protected Attributes inherited from G4HadronicInteraction
G4HadFinalState theParticleChange
 
G4int verboseLevel
 
G4double theMinEnergy
 
G4double theMaxEnergy
 
G4bool isBlocked
 

Detailed Description

Definition at line 44 of file G4LENDElastic.hh.

Constructor & Destructor Documentation

◆ G4LENDElastic()

G4LENDElastic::G4LENDElastic ( G4ParticleDefinition pd)
inline

Definition at line 49 of file G4LENDElastic.hh.

50 :G4LENDModel( "LENDElastic" )
51 {
52 proj = pd;
53
54 //theModelName = "LEND Elastic Model for ";
55 //theModelName += proj->GetParticleName();
57 };
void create_used_target_map()
Definition: G4LENDModel.cc:86
G4ParticleDefinition * proj
Definition: G4LENDModel.hh:77

◆ ~G4LENDElastic()

G4LENDElastic::~G4LENDElastic ( )
inline

Definition at line 59 of file G4LENDElastic.hh.

59{;};

Member Function Documentation

◆ ApplyYourself()

G4HadFinalState * G4LENDElastic::ApplyYourself ( const G4HadProjectile aTrack,
G4Nucleus aTargetNucleus 
)
virtual

Reimplemented from G4LENDModel.

Definition at line 33 of file G4LENDElastic.cc.

34{
35
36 G4double temp = aTrack.GetMaterial()->GetTemperature();
37
38 //G4int iZ = int ( aTarg.GetZ() );
39 //G4int iA = int ( aTarg.GetN() );
40 //migrate to integer A and Z (GetN_asInt returns number of neutrons in the nucleus since this)
41 G4int iZ = aTarg.GetZ_asInt();
42 G4int iA = aTarg.GetA_asInt();
43
44 G4double ke = aTrack.GetKineticEnergy();
45
46 //G4HadFinalState* theResult = new G4HadFinalState();
48 theResult->Clear();
49
50 G4GIDI_target* aTarget = usedTarget_map.find( lend_manager->GetNucleusEncoding( iZ , iA ) )->second->GetTarget();
51 G4double aMu = aTarget->getElasticFinalState( ke*MeV, temp, NULL, NULL );
52
53 G4double phi = twopi*G4UniformRand();
54 G4double theta = std::acos( aMu );
55 //G4double sinth = std::sin( theta );
56
57 G4ReactionProduct theNeutron( const_cast<G4ParticleDefinition *>( aTrack.GetDefinition() ) );
58 theNeutron.SetMomentum( aTrack.Get4Momentum().vect() );
59 theNeutron.SetKineticEnergy( ke );
60
61//G4cout << "iZ " << iZ << " iA " << iA << G4endl;
62
63 G4ReactionProduct theTarget( G4ParticleTable::GetParticleTable()->FindIon( iZ , iA , 0 , iZ ) );
64
65 G4double mass = G4ParticleTable::GetParticleTable()->FindIon( iZ , iA , 0 , iZ )->GetPDGMass();
66
67// add Thermal motion
68 G4double kT = k_Boltzmann*temp;
69 G4ThreeVector v ( G4RandGauss::shoot() * std::sqrt( kT*mass )
70 , G4RandGauss::shoot() * std::sqrt( kT*mass )
71 , G4RandGauss::shoot() * std::sqrt( kT*mass ) );
72 theTarget.SetMomentum( v );
73
74 G4ThreeVector the3Neutron = theNeutron.GetMomentum();
75 G4double nEnergy = theNeutron.GetTotalEnergy();
76 G4ThreeVector the3Target = theTarget.GetMomentum();
77 G4double tEnergy = theTarget.GetTotalEnergy();
78 G4ReactionProduct theCMS;
79 G4double totE = nEnergy+tEnergy;
80 G4ThreeVector the3CMS = the3Target+the3Neutron;
81 theCMS.SetMomentum(the3CMS);
82 G4double cmsMom = std::sqrt(the3CMS*the3CMS);
83 G4double sqrts = std::sqrt((totE-cmsMom)*(totE+cmsMom));
84 theCMS.SetMass(sqrts);
85 theCMS.SetTotalEnergy(totE);
86
87 theNeutron.Lorentz(theNeutron, theCMS);
88 theTarget.Lorentz(theTarget, theCMS);
89 G4double en = theNeutron.GetTotalMomentum(); // already in CMS.
90 G4ThreeVector cms3Mom=theNeutron.GetMomentum(); // for neutron direction in CMS
91 G4double cms_theta=cms3Mom.theta();
92 G4double cms_phi=cms3Mom.phi();
93 G4ThreeVector tempVector;
94 tempVector.setX( std::cos(theta)*std::sin(cms_theta)*std::cos(cms_phi)
95 +std::sin(theta)*std::cos(phi)*std::cos(cms_theta)*std::cos(cms_phi)
96 -std::sin(theta)*std::sin(phi)*std::sin(cms_phi) );
97 tempVector.setY( std::cos(theta)*std::sin(cms_theta)*std::sin(cms_phi)
98 +std::sin(theta)*std::cos(phi)*std::cos(cms_theta)*std::sin(cms_phi)
99 +std::sin(theta)*std::sin(phi)*std::cos(cms_phi) );
100 tempVector.setZ( std::cos(theta)*std::cos(cms_theta)
101 -std::sin(theta)*std::cos(phi)*std::sin(cms_theta) );
102 tempVector *= en;
103 theNeutron.SetMomentum(tempVector);
104 theTarget.SetMomentum(-tempVector);
105 G4double tP = theTarget.GetTotalMomentum();
106 G4double tM = theTarget.GetMass();
107 theTarget.SetTotalEnergy(std::sqrt((tP+tM)*(tP+tM)-2.*tP*tM));
108
109
110 theNeutron.Lorentz(theNeutron, -1.*theCMS);
111
112//110913 Add Protection for very low energy (1e-6eV) scattering
113 if ( theNeutron.GetKineticEnergy() <= 0 )
114 {
115 theNeutron.SetTotalEnergy ( theNeutron.GetMass() * ( 1 + std::pow( 10 , -15.65 ) ) );
116 }
117
118 theTarget.Lorentz(theTarget, -1.*theCMS);
119 if ( theTarget.GetKineticEnergy() < 0 )
120 {
121 theTarget.SetTotalEnergy ( theTarget.GetMass() * ( 1 + std::pow( 10 , -15.65 ) ) );
122 }
123//110913 END
124
125 theTarget.Lorentz(theTarget, -1.*theCMS);
126
127 theResult->SetEnergyChange(theNeutron.GetKineticEnergy());
128 theResult->SetMomentumChange(theNeutron.GetMomentum().unit());
129 G4DynamicParticle* theRecoil = new G4DynamicParticle;
130
131// theRecoil->SetDefinition( ionTable->GetIon( iZ , iA ) );
132 theRecoil->SetDefinition( G4ParticleTable::GetParticleTable()->FindIon( iZ, iA , 0, iZ ));
133 theRecoil->SetMomentum( theTarget.GetMomentum() );
134
135 theResult->AddSecondary( theRecoil );
136
137 return theResult;
138
139}
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4UniformRand()
Definition: Randomize.hh:53
double phi() const
double theta() const
void setY(double)
void setZ(double)
void setX(double)
Hep3Vector vect() const
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetMomentum(const G4ThreeVector &momentum)
double getElasticFinalState(double e_in, double temperature, double(*rng)(void *), void *rngState)
void AddSecondary(G4DynamicParticle *aP)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4int GetNucleusEncoding(G4int iZ, G4int iA)
std::map< G4int, G4LENDUsedTarget * > usedTarget_map
Definition: G4LENDModel.hh:79
G4LENDManager * lend_manager
Definition: G4LENDModel.hh:78
G4double GetTemperature() const
Definition: G4Material.hh:181
G4ParticleDefinition * FindIon(G4int atomicNumber, G4int atomicMass, G4double excitationEnergy)
static G4ParticleTable * GetParticleTable()
void SetMomentum(const G4double x, const G4double y, const G4double z)
void SetTotalEnergy(const G4double en)
void SetMass(const G4double mas)

The documentation for this class was generated from the following files: