#include <G4NuclearAbrasionGeometry.hh>
◆ G4NuclearAbrasionGeometry()
Definition at line 73 of file G4NuclearAbrasionGeometry.cc.
75{
76
77
78
79
81 AP = AP1;
82 AT = AT1;
85 r = r1;
86 n = rP / (rP + rT);
87 b = r / (rP + rT);
88 m = rT / rP;
89 Q = (1.0 - b)/n;
90 S = Q * Q;
91 T = S * Q;
92 R = std::sqrt(m*n);
93 U = 1.0/m - 2.0;
94
95
96
97
98
99 rth = 2.0/3.0;
100 B = 10.0 * MeV;
101}
G4double GetWilsonRadius(G4double A)
◆ ~G4NuclearAbrasionGeometry()
G4NuclearAbrasionGeometry::~G4NuclearAbrasionGeometry |
( |
| ) |
|
◆ F()
G4double G4NuclearAbrasionGeometry::F |
( |
| ) |
|
Definition at line 147 of file G4NuclearAbrasionGeometry.cc.
148{
149
150
151
152
153
154
156
157 if (rT > rP)
158 {
159 if (rT-rP<=r && r<=rT+rP) valueF = 0.75*R*S - 0.125*(3.0*R-1.0)*T;
160 else valueF = 1.0;
161 }
162 else
163 {
164 if (rP-rT<=r && r<=rP+rT) valueF = 0.75*R*S - 0.125*(3.0*std::sqrt(n/m)-
165 (1.0-std::pow(1.0-m*m,3.0/2.0))*std::sqrt(1.0-std::pow(1.0-m,2.0))/std::pow(m,3.0))*T;
166 else valueF = (1.0-std::pow(1.0-m*m,3.0/2.0))*std::sqrt(1.0-b*b/n/n);
167 }
168
169 if (!(valueF <= 1.0 && valueF>= 0.0))
170 {
171 if (valueF > 1.0) valueF = 1.0;
172 else valueF = 0.0;
173 }
174 return valueF;
175}
Referenced by G4WilsonAbrasionModel::ApplyYourself(), GetExcitationEnergyOfProjectile(), and GetExcitationEnergyOfTarget().
◆ GetExcitationEnergyOfProjectile()
G4double G4NuclearAbrasionGeometry::GetExcitationEnergyOfProjectile |
( |
| ) |
|
Definition at line 178 of file G4NuclearAbrasionGeometry.cc.
179{
183
184 Es = 0.95 * MeV * 4.0 *
pi * rP*rP/fermi/fermi *
185 (1.0+P1-std::pow(1.0-F1,2.0/3.0));
186
187 if ((r-rP)/rT < rth)
188 {
190 if (AP < 12.0) omega = 1500.0;
191 else if (AP <= 16.0) omega = 1500.0 - 320.0*(AP-12.0);
192 Es *= 1.0 + F1*(5.0+omega*F1*F1);
193 }
194
195 if (Es < 0.0)
196 Es = 0.0;
197 else if (Es > B * AP)
198 Es = B * AP;
199 return Es;
200}
Referenced by G4WilsonAbrasionModel::ApplyYourself().
◆ GetExcitationEnergyOfTarget()
G4double G4NuclearAbrasionGeometry::GetExcitationEnergyOfTarget |
( |
| ) |
|
Definition at line 203 of file G4NuclearAbrasionGeometry.cc.
204{
205
206
207
208
209
215
216 Es = 0.95 * MeV * 4.0 *
pi * rT*rT/fermi/fermi *
217 (1.0+P1-std::pow(1.0-F1,2.0/3.0));
218
219
220 if ((r-rT)/rP < rth) {
222 if (AT < 12.0) omega = 1500.0;
223 else if (AT <= 16.0) omega = 1500.0 - 320.0*(AT-12.0);
224 Es *= 1.0 + F1*(5.0+omega*F1*F1);
225 }
226
227 if (Es < 0.0)
228 Es = 0.0;
229 else if (Es > B * AT)
230 Es = B * AT;
231
232 delete revAbrasionGeometry;
233
234 return Es;
235}
Referenced by G4WilsonAbrasionModel::ApplyYourself().
◆ GetPeripheralThreshold()
G4double G4NuclearAbrasionGeometry::GetPeripheralThreshold |
( |
| ) |
|
◆ P()
G4double G4NuclearAbrasionGeometry::P |
( |
| ) |
|
Definition at line 116 of file G4NuclearAbrasionGeometry.cc.
117{
118
119
120
121
122
123
125
126 if (rT > rP)
127 {
128 if (rT-rP<=r && r<=rT+rP) valueP = 0.125*R*U*S - 0.125*(0.5*R*U+1.0)*T;
129 else valueP = -1.0;
130 }
131 else
132 {
133 if (rP-rT<=r && r<=rP+rT) valueP = 0.125*R*U*S - 0.125*(0.5*std::sqrt(n/m)*U-
134 (std::sqrt(1.0-m*m)/n - 1.0)*std::sqrt((2.0-m)/std::pow(m,5.0)))*T;
135 else valueP = (std::sqrt(1.0-m*m)/n-1.0)*std::sqrt(1.0-b*b/n/n);
136 }
137
138 if (!(valueP <= 1.0 && valueP>= -1.0))
139 {
140 if (valueP > 1.0) valueP = 1.0;
141 else valueP = -1.0;
142 }
143 return valueP;
144}
Referenced by GetExcitationEnergyOfProjectile(), and GetExcitationEnergyOfTarget().
◆ SetPeripheralThreshold()
void G4NuclearAbrasionGeometry::SetPeripheralThreshold |
( |
G4double |
rth1 | ) |
|
The documentation for this class was generated from the following files: