112 PrintWelcomeMessage();
116 useAblation = useAblation1;
163 conserveEnergy =
false;
164 conserveMomentum =
true;
169 outFile <<
"G4WilsonAbrasionModel is a macroscopic treatment of\n"
170 <<
"nucleus-nucleus collisions using simple geometric arguments.\n"
171 <<
"The smaller projectile nucleus gouges out a part of the larger\n"
172 <<
"target nucleus, leaving a residual nucleus and a fireball\n"
173 <<
"region where the projectile and target intersect. The fireball"
174 <<
"is then treated as a highly excited nuclear fragment. This\n"
175 <<
"model is based on the NUCFRG2 model and is valid for all\n"
176 <<
"projectile energies between 70 MeV/n and 10.1 GeV/n. \n";
183 PrintWelcomeMessage();
197 theExcitationHandler = aExcitationHandler;
222 conserveEnergy =
false;
223 conserveMomentum =
true;
233 if (theExcitationHandler)
delete theExcitationHandler;
234 if (theExcitationHandlerx)
delete theExcitationHandlerx;
235 if (useAblation)
delete theAblation;
278 G4cout <<
"########################################"
279 <<
"########################################"
283 G4cout <<
"Initial projectile A=" <<AP
285 <<
", radius = " <<rP/fermi <<
" fm"
287 G4cout <<
"Initial target A=" <<AT
289 <<
", radius = " <<rT/fermi <<
" fm"
291 G4cout <<
"Projectile momentum and Energy/nuc = " <<pP <<
" ," <<E <<
G4endl;
298 G4double rm = ZP * ZT * elm_coupling / (E * AP);
319 if (theAbrasionGeometry)
321 delete theAbrasionGeometry;
322 theAbrasionGeometry = NULL;
340 if (rm >= fradius * rPT) {
345 G4cout <<
"Particle energy too low to overcome repulsion." <<
G4endl;
346 G4cout <<
"Event rejected and original track maintained" <<
G4endl;
347 G4cout <<
"########################################"
348 <<
"########################################"
360 while (r > rPT && ++evtcnt < 1000)
363 r = (rm + std::sqrt(rm*rm + 4.0*bsq)) / 2.0;
370 if (evtcnt >= 1000) {
375 G4cout <<
"Particle energy too low to overcome repulsion." <<
G4endl;
376 G4cout <<
"Event rejected and original track maintained" <<
G4endl;
377 G4cout <<
"########################################"
378 <<
"########################################"
392 G4double x = (rPsq + rsq - rTsq) / 2.0 / r;
393 if (x > 0.0) CT = 2.0 * std::sqrt(rTsq - x*x);
394 else CT = 2.0 * std::sqrt(rTsq - rsq);
398 G4double x = (rTsq + rsq - rPsq) / 2.0 / r;
399 if (x > 0.0) CT = 2.0 * std::sqrt(rTsq - x*x);
411 F = theAbrasionGeometry->
F();
412 G4double lambda = 16.6*fermi / std::pow(E/MeV,0.26);
413 G4double Mabr = F * AP * (1.0 - std::exp(-CT/lambda));
415 for (
G4int i = 0; i<10; i++)
420 if (n>AP) Dabr = (
G4int) AP;
421 else Dabr = (
G4int) n;
429 G4cout <<
"Impact parameter = " <<r/fermi <<
" fm" <<
G4endl;
450 G4Fragment *fragmentP = GetAbradedNucleons (Dabr, AP, ZP, rP);
453 for (i=0; i<nSecP; i++)
456 GetParticle()->GetTotalEnergy();
464 if (DspcP <= 0) DspcP = 0;
465 else if (DspcP > AP-Dabr) DspcP = ((
G4int) AP) - Dabr;
473 G4bool excitationAbsorbedByProjectile =
false;
474 if (fragmentP != NULL)
480 if (excitationAbsorbedByProjectile)
481 ExP = GetNucleonInducedExcitation(rP, rT, r);
483 if (xP > B*(AP-Dabr)) xP = B*(AP-Dabr);
485 lorentzVector.
setE(lorentzVector.e()+xP);
487 TotalEPost += lorentzVector.e();
499 G4Fragment *fragmentT = GetAbradedNucleons (Dabr, AT, ZT, rT);
501 for (i=nSecP; i<nSec; i++)
504 GetParticle()->GetTotalEnergy();
512 if (DspcT <= 0) DspcT = 0;
513 else if (DspcT > AP-Dabr) DspcT = ((
G4int) AT) - Dabr;
521 if (fragmentT != NULL)
525 if (!excitationAbsorbedByProjectile)
526 ExT = GetNucleonInducedExcitation(rT, rP, r);
528 if (xT > B*(AT-Dabr)) xT = B*(AT-Dabr);
530 lorentzVector.
setE(lorentzVector.e()+xT);
532 TotalEPost += lorentzVector.e();
540 G4double deltaE = TotalEPre - TotalEPost;
541 if (deltaE > 0.0 && conserveEnergy)
543 G4double beta = std::sqrt(1.0 - EMassP*EMassP/std::pow(deltaE+EMassP,2.0));
544 boost = boost / boost.
mag() * beta;
551 for (i=0; i<nSecP; i++)
556 lorentzVector.
boost(-boost);
558 pBalance -= lorentzVector.
vect();
570 if (fragmentP != NULL)
574 if (conserveMomentum)
580 fragmentP->
SetMomentum(lorentzVector.
boost(-boost * fragmentGroundStateM/fragmentM));
590 G4cout <<
"-----------------------------------" <<
G4endl;
591 G4cout <<
"Secondary nucleons from projectile:" <<
G4endl;
592 G4cout <<
"-----------------------------------" <<
G4endl;
594 for (i=0; i<nSecP; i++)
606 if (fragmentP != NULL)
615 for (i=nSecP; i<nSec; i++)
627 if (fragmentT != NULL)
637 if (fragmentP !=NULL)
640 if (fragmentP->
GetZ() != fragmentP->
GetA())
641 products = theExcitationHandler->
BreakItUp(*fragmentP);
643 products = theExcitationHandlerx->
BreakItUp(*fragmentP);
647 G4ReactionProductVector::iterator iter;
648 for (iter = products->begin(); iter != products->end(); ++iter)
652 (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
654 G4String particleName = (*iter)->GetDefinition()->GetParticleName();
656 if (
verboseLevel >= 2 && particleName.find(
"[",0) < particleName.size())
661 G4cout <<
" fragmentP = " <<particleName
674 if (fragmentT != NULL)
677 if (fragmentT->
GetZ() != fragmentT->
GetA())
678 products = theExcitationHandler->
BreakItUp(*fragmentT);
680 products = theExcitationHandlerx->
BreakItUp(*fragmentT);
684 G4ReactionProductVector::iterator iter;
685 for (iter = products->begin(); iter != products->end(); ++iter)
689 (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
691 G4String particleName = (*iter)->GetDefinition()->GetParticleName();
693 if (
verboseLevel >= 2 && particleName.find(
"[",0) < particleName.size())
698 G4cout <<
" fragmentT = " <<particleName
707 G4cout <<
"########################################"
708 <<
"########################################"
711 delete theAbrasionGeometry;
727 G4double pK = hbarc * std::pow(9.0 * pi / 4.0 * A, third) / (1.29 * r);
728 if (A <= 24.0) pK *= -0.229*std::pow(A,third) + 1.62;
752 for (
G4int i=0; i<Dabr; i++)
766 C2*std::exp(-psq/p2sq/2.0) +
C3*std::exp(-psq/p3sq/2.0) + p/gamma/std::sinh(p/gamma);
790 G4double sintheta = std::sqrt((1.0 - costheta)*(1.0 + costheta));
792 G4ThreeVector direction(sintheta*std::cos(phi),sintheta*std::sin(phi),costheta);
794 G4double E = std::sqrt(p*p + nucleonMass*nucleonMass)-nucleonMass;
811 G4double E = std::sqrt(pabr.mag2() + ionMass*ionMass);
821G4double G4WilsonAbrasionModel::GetNucleonInducedExcitation
837 if (r > rT) Cl = 2.0*std::sqrt(rPsq + 2.0*r*rT - rsq - rTsq);
847 if (rT > rP && rsq < rTsq - rPsq) Ct = 2.0 * rP;
848 else if (rP > rT && rsq < rPsq - rTsq) Ct = 2.0 * rT;
850 G4double bP = (rPsq+rsq-rTsq)/2.0/r;
853 G4cerr <<
"########################################"
854 <<
"########################################"
856 G4cerr <<
"ERROR IN G4WilsonAbrasionModel::GetNucleonInducedExcitation"
858 G4cerr <<
"rPsq - bP*bP < 0.0 and cannot be square-rooted" <<
G4endl;
860 G4cerr <<
"########################################"
861 <<
"########################################"
864 Ct = 2.0*std::sqrt(x);
869 Ex += 13.0 * Cl / fermi /3.0 * (Ct/fermi - 1.5);
877 if (useAblation != useAblation1)
879 useAblation = useAblation1;
880 delete theExcitationHandler;
881 delete theExcitationHandlerx;
914void G4WilsonAbrasionModel::PrintWelcomeMessage ()
917 G4cout <<
" *****************************************************************"
919 G4cout <<
" Nuclear abrasion model for nuclear-nuclear interactions activated"
921 G4cout <<
" (Written by QinetiQ Ltd for the European Space Agency)"
923 G4cout <<
" *****************************************************************"
CLHEP::HepLorentzVector G4LorentzVector
G4long G4Poisson(G4double mean)
std::vector< G4ReactionProduct * > G4ReactionProductVector
G4DLLIMPORT std::ostream G4cerr
G4DLLIMPORT std::ostream G4cout
HepLorentzVector & boost(double, double, double)
Hep3Vector findBoostToCM() const
void DumpInfo(G4int mode=0) const
G4ParticleDefinition * GetDefinition() const
G4LorentzVector Get4Momentum() const
G4double GetKineticEnergy() const
void Set4Momentum(const G4LorentzVector &momentum)
void SetMaxAandZForFermiBreakUp(G4int anA, G4int aZ)
void SetEvaporation(G4VEvaporation *ptr)
void SetFermiModel(G4VFermiBreakUp *ptr)
void SetMultiFragmentation(G4VMultiFragmentation *ptr)
void SetMinEForMultiFrag(G4double anE)
G4ReactionProductVector * BreakItUp(const G4Fragment &theInitialState) const
G4double GetGroundStateMass() const
const G4LorentzVector & GetMomentum() const
void SetMomentum(const G4LorentzVector &value)
void SetStatusChange(G4HadFinalStateStatus aS)
G4int GetNumberOfSecondaries() const
void AddSecondary(G4DynamicParticle *aP)
void SetEnergyChange(G4double anEnergy)
G4HadSecondary * GetSecondary(size_t i)
void SetMomentumChange(const G4ThreeVector &aV)
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
G4DynamicParticle * GetParticle()
G4HadFinalState theParticleChange
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)
static G4Neutron * NeutronDefinition()
G4double GetExcitationEnergyOfTarget()
G4double GetExcitationEnergyOfProjectile()
G4double GetEnergyDeposit()
G4double AtomicMass(const G4double A, const G4double Z) const
G4double GetPDGMass() const
G4double GetPDGCharge() const
G4int GetBaryonNumber() const
const G4String & GetParticleName() const
static G4ParticleTable * GetParticleTable()
G4IonTable * GetIonTable()
static G4Proton * ProtonDefinition()
void SetVerboseLevel(G4int)
virtual void ModelDescription(std::ostream &) const
G4WilsonAbrasionModel(G4bool useAblation1=false)
void SetUseAblation(G4bool)
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &, G4Nucleus &)
G4double GetWilsonRadius(G4double A)