Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4WilsonAbrasionModel Class Reference

#include <G4WilsonAbrasionModel.hh>

+ Inheritance diagram for G4WilsonAbrasionModel:

Public Member Functions

 G4WilsonAbrasionModel (G4bool useAblation1=false)
 
 G4WilsonAbrasionModel (G4ExcitationHandler *)
 
 ~G4WilsonAbrasionModel ()
 
 G4WilsonAbrasionModel (const G4WilsonAbrasionModel &right)
 
const G4WilsonAbrasionModeloperator= (G4WilsonAbrasionModel &right)
 
virtual G4HadFinalStateApplyYourself (const G4HadProjectile &, G4Nucleus &)
 
void SetVerboseLevel (G4int)
 
void SetUseAblation (G4bool)
 
G4bool GetUseAblation ()
 
void SetConserveMomentum (G4bool)
 
G4bool GetConserveMomentum ()
 
void SetExcitationHandler (G4ExcitationHandler *)
 
G4ExcitationHandlerGetExcitationHandler ()
 
virtual void ModelDescription (std::ostream &) const
 
- Public Member Functions inherited from G4HadronicInteraction
 G4HadronicInteraction (const G4String &modelName="HadronicModel")
 
virtual ~G4HadronicInteraction ()
 
virtual G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)=0
 
virtual G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
virtual G4bool IsApplicable (const G4HadProjectile &, G4Nucleus &)
 
G4double GetMinEnergy () const
 
G4double GetMinEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMinEnergy (G4double anEnergy)
 
void SetMinEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMinEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4double GetMaxEnergy () const
 
G4double GetMaxEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMaxEnergy (const G4double anEnergy)
 
void SetMaxEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMaxEnergy (G4double anEnergy, const G4Material *aMaterial)
 
const G4HadronicInteractionGetMyPointer () const
 
G4int GetVerboseLevel () const
 
void SetVerboseLevel (G4int value)
 
const G4StringGetModelName () const
 
void DeActivateFor (const G4Material *aMaterial)
 
void ActivateFor (const G4Material *aMaterial)
 
void DeActivateFor (const G4Element *anElement)
 
void ActivateFor (const G4Element *anElement)
 
G4bool IsBlocked (const G4Material *aMaterial) const
 
G4bool IsBlocked (const G4Element *anElement) const
 
void SetRecoilEnergyThreshold (G4double val)
 
G4double GetRecoilEnergyThreshold () const
 
G4bool operator== (const G4HadronicInteraction &right) const
 
G4bool operator!= (const G4HadronicInteraction &right) const
 
virtual const std::pair< G4double, G4doubleGetFatalEnergyCheckLevels () const
 
virtual std::pair< G4double, G4doubleGetEnergyMomentumCheckLevels () const
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 
virtual void ModelDescription (std::ostream &outFile) const
 

Additional Inherited Members

- Protected Member Functions inherited from G4HadronicInteraction
void SetModelName (const G4String &nam)
 
G4bool IsBlocked () const
 
void Block ()
 
- Protected Attributes inherited from G4HadronicInteraction
G4HadFinalState theParticleChange
 
G4int verboseLevel
 
G4double theMinEnergy
 
G4double theMaxEnergy
 
G4bool isBlocked
 

Detailed Description

Definition at line 77 of file G4WilsonAbrasionModel.hh.

Constructor & Destructor Documentation

◆ G4WilsonAbrasionModel() [1/3]

G4WilsonAbrasionModel::G4WilsonAbrasionModel ( G4bool  useAblation1 = false)

Definition at line 108 of file G4WilsonAbrasionModel.cc.

109 :G4HadronicInteraction("G4WilsonAbrasion")
110{
111 // Send message to stdout to advise that the G4Abrasion model is being used.
112 PrintWelcomeMessage();
113
114 // Set the default verbose level to 0 - no output.
115 verboseLevel = 0;
116 useAblation = useAblation1;
117
118 // No de-excitation handler has been supplied - define the default handler.
119
120 theExcitationHandler = new G4ExcitationHandler;
121 theExcitationHandlerx = new G4ExcitationHandler;
122 if (useAblation)
123 {
124 theAblation = new G4WilsonAblationModel;
125 theAblation->SetVerboseLevel(verboseLevel);
126 theExcitationHandler->SetEvaporation(theAblation);
127 theExcitationHandlerx->SetEvaporation(theAblation);
128 }
129 else
130 {
131 theAblation = NULL;
132 G4Evaporation * theEvaporation = new G4Evaporation;
133 G4FermiBreakUp * theFermiBreakUp = new G4FermiBreakUp;
134 G4StatMF * theMF = new G4StatMF;
135 theExcitationHandler->SetEvaporation(theEvaporation);
136 theExcitationHandler->SetFermiModel(theFermiBreakUp);
137 theExcitationHandler->SetMultiFragmentation(theMF);
138 theExcitationHandler->SetMaxAandZForFermiBreakUp(12, 6);
139 theExcitationHandler->SetMinEForMultiFrag(5.0*MeV);
140
141 theEvaporation = new G4Evaporation;
142 theFermiBreakUp = new G4FermiBreakUp;
143 theExcitationHandlerx->SetEvaporation(theEvaporation);
144 theExcitationHandlerx->SetFermiModel(theFermiBreakUp);
145 theExcitationHandlerx->SetMaxAandZForFermiBreakUp(12, 6);
146 }
147
148 // Set the minimum and maximum range for the model (despite nomanclature,
149 // this is in energy per nucleon number).
150
151 SetMinEnergy(70.0*MeV);
152 SetMaxEnergy(10.1*GeV);
153 isBlocked = false;
154
155 // npK, when mutiplied by the nuclear Fermi momentum, determines the range of
156 // momentum over which the secondary nucleon momentum is sampled.
157
158 r0sq = 0.0;
159 npK = 5.0;
160 B = 10.0 * MeV;
161 third = 1.0 / 3.0;
162 fradius = 0.99;
163 conserveEnergy = false;
164 conserveMomentum = true;
165}
void SetMaxAandZForFermiBreakUp(G4int anA, G4int aZ)
void SetEvaporation(G4VEvaporation *ptr)
void SetFermiModel(G4VFermiBreakUp *ptr)
void SetMultiFragmentation(G4VMultiFragmentation *ptr)
void SetMinEForMultiFrag(G4double anE)
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)

◆ G4WilsonAbrasionModel() [2/3]

G4WilsonAbrasionModel::G4WilsonAbrasionModel ( G4ExcitationHandler aExcitationHandler)

Definition at line 179 of file G4WilsonAbrasionModel.cc.

180{
181// Send message to stdout to advise that the G4Abrasion model is being used.
182
183 PrintWelcomeMessage();
184
185// Set the default verbose level to 0 - no output.
186
187 verboseLevel = 0;
188
189 theAblation = NULL; //A.R. 26-Jul-2012 Coverity fix.
190 useAblation = false; //A.R. 14-Aug-2012 Coverity fix.
191
192//
193// The user is able to provide the excitation handler as well as an argument
194// which is provided in this instantiation is used to determine
195// whether the spectators of the interaction are free following the abrasion.
196//
197 theExcitationHandler = aExcitationHandler;
198 theExcitationHandlerx = new G4ExcitationHandler;
199 G4Evaporation * theEvaporation = new G4Evaporation;
200 G4FermiBreakUp * theFermiBreakUp = new G4FermiBreakUp;
201 theExcitationHandlerx->SetEvaporation(theEvaporation);
202 theExcitationHandlerx->SetFermiModel(theFermiBreakUp);
203 theExcitationHandlerx->SetMaxAandZForFermiBreakUp(12, 6);
204//
205//
206// Set the minimum and maximum range for the model (despite nomanclature, this
207// is in energy per nucleon number).
208//
209 SetMinEnergy(70.0*MeV);
210 SetMaxEnergy(10.1*GeV);
211 isBlocked = false;
212//
213//
214// npK, when mutiplied by the nuclear Fermi momentum, determines the range of
215// momentum over which the secondary nucleon momentum is sampled.
216//
217 r0sq = 0.0; //A.R. 14-Aug-2012 Coverity fix.
218 npK = 5.0;
219 B = 10.0 * MeV;
220 third = 1.0 / 3.0;
221 fradius = 0.99;
222 conserveEnergy = false;
223 conserveMomentum = true;
224}

◆ ~G4WilsonAbrasionModel()

G4WilsonAbrasionModel::~G4WilsonAbrasionModel ( )

Definition at line 227 of file G4WilsonAbrasionModel.cc.

228{
229//
230//
231// The destructor doesn't have to do a great deal!
232//
233 if (theExcitationHandler) delete theExcitationHandler;
234 if (theExcitationHandlerx) delete theExcitationHandlerx;
235 if (useAblation) delete theAblation;
236// delete theExcitationHandler;
237// delete theExcitationHandlerx;
238}

◆ G4WilsonAbrasionModel() [3/3]

G4WilsonAbrasionModel::G4WilsonAbrasionModel ( const G4WilsonAbrasionModel right)

Member Function Documentation

◆ ApplyYourself()

G4HadFinalState * G4WilsonAbrasionModel::ApplyYourself ( const G4HadProjectile theTrack,
G4Nucleus theTarget 
)
virtual

Implements G4HadronicInteraction.

Definition at line 241 of file G4WilsonAbrasionModel.cc.

243{
244//
245//
246// The secondaries will be returned in G4HadFinalState &theParticleChange -
247// initialise this. The original track will always be discontinued and
248// secondaries followed.
249//
252//
253//
254// Get relevant information about the projectile and target (A, Z, energy/nuc,
255// momentum, etc).
256//
257 const G4ParticleDefinition *definitionP = theTrack.GetDefinition();
258 const G4double AP = definitionP->GetBaryonNumber();
259 const G4double ZP = definitionP->GetPDGCharge();
260 G4LorentzVector pP = theTrack.Get4Momentum();
261 G4double E = theTrack.GetKineticEnergy()/AP;
262 G4double AT = theTarget.GetA_asInt();
263 G4double ZT = theTarget.GetZ_asInt();
264 G4double TotalEPre = theTrack.GetTotalEnergy() +
265 theTarget.AtomicMass(AT, ZT) + theTarget.GetEnergyDeposit();
266 G4double TotalEPost = 0.0;
267//
268//
269// Determine the radii of the projectile and target nuclei.
270//
272 G4double rP = aR.GetWilsonRadius(AP);
273 G4double rT = aR.GetWilsonRadius(AT);
274 G4double rPsq = rP * rP;
275 G4double rTsq = rT * rT;
276 if (verboseLevel >= 2)
277 {
278 G4cout <<"########################################"
279 <<"########################################"
280 <<G4endl;
281 G4cout.precision(6);
282 G4cout <<"IN G4WilsonAbrasionModel" <<G4endl;
283 G4cout <<"Initial projectile A=" <<AP
284 <<", Z=" <<ZP
285 <<", radius = " <<rP/fermi <<" fm"
286 <<G4endl;
287 G4cout <<"Initial target A=" <<AT
288 <<", Z=" <<ZT
289 <<", radius = " <<rT/fermi <<" fm"
290 <<G4endl;
291 G4cout <<"Projectile momentum and Energy/nuc = " <<pP <<" ," <<E <<G4endl;
292 }
293//
294//
295// The following variables are used to determine the impact parameter in the
296// near-field (i.e. taking into consideration the electrostatic repulsion).
297//
298 G4double rm = ZP * ZT * elm_coupling / (E * AP);
299 G4double r = 0.0;
300 G4double rsq = 0.0;
301//
302//
303// Initialise some of the variables which wll be used to calculate the chord-
304// length for nucleons in the projectile and target, and hence calculate the
305// number of abraded nucleons and the excitation energy.
306//
307 G4NuclearAbrasionGeometry *theAbrasionGeometry = NULL;
308 G4double CT = 0.0;
309 G4double F = 0.0;
310 G4int Dabr = 0;
311//
312//
313// The following loop is performed until the number of nucleons which are
314// abraded by the process is >1, i.e. an interaction MUST occur.
315//
316 while (Dabr == 0)
317 {
318// Added by MHM 20050119 to fix leaking memory on second pass through this loop
319 if (theAbrasionGeometry)
320 {
321 delete theAbrasionGeometry;
322 theAbrasionGeometry = NULL;
323 }
324//
325//
326// Sample the impact parameter. For the moment, this class takes account of
327// electrostatic effects on the impact parameter, but (like HZETRN AND NUCFRG2)
328// does not make any correction for the effects of nuclear-nuclear repulsion.
329//
330 G4double rPT = rP + rT;
331 G4double rPTsq = rPT * rPT;
332//
333//
334// This is a "catch" to make sure we don't go into an infinite loop because the
335// energy is too low to overcome nuclear repulsion. PRT 20091023. If the
336// value of rm < fradius * rPT then we're unlikely to sample a small enough
337// impact parameter (energy of incident particle is too low). Return primary
338// and don't complete nuclear interaction analysis.
339//
340 if (rm >= fradius * rPT) {
344 if (verboseLevel >= 2) {
345 G4cout <<"Particle energy too low to overcome repulsion." <<G4endl;
346 G4cout <<"Event rejected and original track maintained" <<G4endl;
347 G4cout <<"########################################"
348 <<"########################################"
349 <<G4endl;
350 }
351 return &theParticleChange;
352 }
353//
354//
355// Now sample impact parameter until the criterion is met that projectile
356// and target overlap, but repulsion is taken into consideration.
357//
358 G4int evtcnt = 0;
359 r = 1.1 * rPT;
360 while (r > rPT && ++evtcnt < 1000)
361 {
362 G4double bsq = rPTsq * G4UniformRand();
363 r = (rm + std::sqrt(rm*rm + 4.0*bsq)) / 2.0;
364 }
365//
366//
367// We've tried to sample this 1000 times, but failed. Assume nuclei do not
368// collide.
369//
370 if (evtcnt >= 1000) {
374 if (verboseLevel >= 2) {
375 G4cout <<"Particle energy too low to overcome repulsion." <<G4endl;
376 G4cout <<"Event rejected and original track maintained" <<G4endl;
377 G4cout <<"########################################"
378 <<"########################################"
379 <<G4endl;
380 }
381 return &theParticleChange;
382 }
383
384
385 rsq = r * r;
386//
387//
388// Now determine the chord-length through the target nucleus.
389//
390 if (rT > rP)
391 {
392 G4double x = (rPsq + rsq - rTsq) / 2.0 / r;
393 if (x > 0.0) CT = 2.0 * std::sqrt(rTsq - x*x);
394 else CT = 2.0 * std::sqrt(rTsq - rsq);
395 }
396 else
397 {
398 G4double x = (rTsq + rsq - rPsq) / 2.0 / r;
399 if (x > 0.0) CT = 2.0 * std::sqrt(rTsq - x*x);
400 else CT = 2.0 * rT;
401 }
402//
403//
404// Determine the number of abraded nucleons. Note that the mean number of
405// abraded nucleons is used to sample the Poisson distribution. The Poisson
406// distribution is sampled only ten times with the current impact parameter,
407// and if it fails after this to find a case for which the number of abraded
408// nucleons >1, the impact parameter is re-sampled.
409//
410 theAbrasionGeometry = new G4NuclearAbrasionGeometry(AP,AT,r);
411 F = theAbrasionGeometry->F();
412 G4double lambda = 16.6*fermi / std::pow(E/MeV,0.26);
413 G4double Mabr = F * AP * (1.0 - std::exp(-CT/lambda));
414 G4long n = 0;
415 for (G4int i = 0; i<10; i++)
416 {
417 n = G4Poisson(Mabr);
418 if (n > 0)
419 {
420 if (n>AP) Dabr = (G4int) AP;
421 else Dabr = (G4int) n;
422 break;
423 }
424 }
425 }
426 if (verboseLevel >= 2)
427 {
428 G4cout <<G4endl;
429 G4cout <<"Impact parameter = " <<r/fermi <<" fm" <<G4endl;
430 G4cout <<"# Abraded nucleons = " <<Dabr <<G4endl;
431 }
432//
433//
434// The number of abraded nucleons must be no greater than the number of
435// nucleons in either the projectile or the target. If AP - Dabr < 2 or
436// AT - Dabr < 2 then either we have only a nucleon left behind in the
437// projectile/target or we've tried to abrade too many nucleons - and Dabr
438// should be limited.
439//
440 if (AP - (G4double) Dabr < 2.0) Dabr = (G4int) AP;
441 if (AT - (G4double) Dabr < 2.0) Dabr = (G4int) AT;
442//
443//
444// Determine the abraded secondary nucleons from the projectile. *fragmentP
445// is a pointer to the prefragment from the projectile and nSecP is the number
446// of nucleons in theParticleChange which have been abraded. The total energy
447// from these is determined.
448//
449 G4ThreeVector boost = pP.findBoostToCM();
450 G4Fragment *fragmentP = GetAbradedNucleons (Dabr, AP, ZP, rP);
452 G4int i = 0;
453 for (i=0; i<nSecP; i++)
454 {
455 TotalEPost += theParticleChange.GetSecondary(i)->
456 GetParticle()->GetTotalEnergy();
457 }
458//
459//
460// Determine the number of spectators in the interaction region for the
461// projectile.
462//
463 G4int DspcP = (G4int) (AP*F) - Dabr;
464 if (DspcP <= 0) DspcP = 0;
465 else if (DspcP > AP-Dabr) DspcP = ((G4int) AP) - Dabr;
466//
467//
468// Determine excitation energy associated with excess surface area of the
469// projectile (EsP) and the excitation due to scattering of nucleons which are
470// retained within the projectile (ExP). Add the total energy from the excited
471// nucleus to the total energy of the secondaries.
472//
473 G4bool excitationAbsorbedByProjectile = false;
474 if (fragmentP != NULL)
475 {
476 G4double EsP = theAbrasionGeometry->GetExcitationEnergyOfProjectile();
477 G4double ExP = 0.0;
478 if (Dabr < AT)
479 excitationAbsorbedByProjectile = G4UniformRand() < 0.5;
480 if (excitationAbsorbedByProjectile)
481 ExP = GetNucleonInducedExcitation(rP, rT, r);
482 G4double xP = EsP + ExP;
483 if (xP > B*(AP-Dabr)) xP = B*(AP-Dabr);
484 G4LorentzVector lorentzVector = fragmentP->GetMomentum();
485 lorentzVector.setE(lorentzVector.e()+xP);
486 fragmentP->SetMomentum(lorentzVector);
487 TotalEPost += lorentzVector.e();
488 }
489 G4double EMassP = TotalEPost;
490//
491//
492// Determine the abraded secondary nucleons from the target. Note that it's
493// assumed that the same number of nucleons are abraded from the target as for
494// the projectile, and obviously no boost is applied to the products. *fragmentT
495// is a pointer to the prefragment from the target and nSec is the total number
496// of nucleons in theParticleChange which have been abraded. The total energy
497// from these is determined.
498//
499 G4Fragment *fragmentT = GetAbradedNucleons (Dabr, AT, ZT, rT);
501 for (i=nSecP; i<nSec; i++)
502 {
503 TotalEPost += theParticleChange.GetSecondary(i)->
504 GetParticle()->GetTotalEnergy();
505 }
506//
507//
508// Determine the number of spectators in the interaction region for the
509// target.
510//
511 G4int DspcT = (G4int) (AT*F) - Dabr;
512 if (DspcT <= 0) DspcT = 0;
513 else if (DspcT > AP-Dabr) DspcT = ((G4int) AT) - Dabr;
514//
515//
516// Determine excitation energy associated with excess surface area of the
517// target (EsT) and the excitation due to scattering of nucleons which are
518// retained within the target (ExT). Add the total energy from the excited
519// nucleus to the total energy of the secondaries.
520//
521 if (fragmentT != NULL)
522 {
523 G4double EsT = theAbrasionGeometry->GetExcitationEnergyOfTarget();
524 G4double ExT = 0.0;
525 if (!excitationAbsorbedByProjectile)
526 ExT = GetNucleonInducedExcitation(rT, rP, r);
527 G4double xT = EsT + ExT;
528 if (xT > B*(AT-Dabr)) xT = B*(AT-Dabr);
529 G4LorentzVector lorentzVector = fragmentT->GetMomentum();
530 lorentzVector.setE(lorentzVector.e()+xT);
531 fragmentT->SetMomentum(lorentzVector);
532 TotalEPost += lorentzVector.e();
533 }
534//
535//
536// Now determine the difference between the pre and post interaction
537// energy - this will be used to determine the Lorentz boost if conservation
538// of energy is to be imposed/attempted.
539//
540 G4double deltaE = TotalEPre - TotalEPost;
541 if (deltaE > 0.0 && conserveEnergy)
542 {
543 G4double beta = std::sqrt(1.0 - EMassP*EMassP/std::pow(deltaE+EMassP,2.0));
544 boost = boost / boost.mag() * beta;
545 }
546//
547//
548// Now boost the secondaries from the projectile.
549//
550 G4ThreeVector pBalance = pP.vect();
551 for (i=0; i<nSecP; i++)
552 {
554 GetParticle();
555 G4LorentzVector lorentzVector = dynamicP->Get4Momentum();
556 lorentzVector.boost(-boost);
557 dynamicP->Set4Momentum(lorentzVector);
558 pBalance -= lorentzVector.vect();
559 }
560//
561//
562// Set the boost for the projectile prefragment. This is now based on the
563// conservation of momentum. However, if the user selected momentum of the
564// prefragment is not to be conserved this simply boosted to the velocity of the
565// original projectile times the ratio of the unexcited to the excited mass
566// of the prefragment (the excitation increases the effective mass of the
567// prefragment, and therefore modifying the boost is an attempt to prevent
568// the momentum of the prefragment being excessive).
569//
570 if (fragmentP != NULL)
571 {
572 G4LorentzVector lorentzVector = fragmentP->GetMomentum();
573 G4double fragmentM = lorentzVector.m();
574 if (conserveMomentum)
575 fragmentP->SetMomentum
576 (G4LorentzVector(pBalance,std::sqrt(pBalance.mag2()+fragmentM*fragmentM+1.0*eV*eV)));
577 else
578 {
579 G4double fragmentGroundStateM = fragmentP->GetGroundStateMass();
580 fragmentP->SetMomentum(lorentzVector.boost(-boost * fragmentGroundStateM/fragmentM));
581 }
582 }
583//
584//
585// Output information to user if verbose information requested.
586//
587 if (verboseLevel >= 2)
588 {
589 G4cout <<G4endl;
590 G4cout <<"-----------------------------------" <<G4endl;
591 G4cout <<"Secondary nucleons from projectile:" <<G4endl;
592 G4cout <<"-----------------------------------" <<G4endl;
593 G4cout.precision(7);
594 for (i=0; i<nSecP; i++)
595 {
596 G4cout <<"Particle # " <<i <<G4endl;
599 G4cout <<"New nucleon (P) " <<dyn->GetDefinition()->GetParticleName()
600 <<" : " <<dyn->Get4Momentum()
601 <<G4endl;
602 }
603 G4cout <<"---------------------------" <<G4endl;
604 G4cout <<"The projectile prefragment:" <<G4endl;
605 G4cout <<"---------------------------" <<G4endl;
606 if (fragmentP != NULL)
607 G4cout <<*fragmentP <<G4endl;
608 else
609 G4cout <<"(No residual prefragment)" <<G4endl;
610 G4cout <<G4endl;
611 G4cout <<"-------------------------------" <<G4endl;
612 G4cout <<"Secondary nucleons from target:" <<G4endl;
613 G4cout <<"-------------------------------" <<G4endl;
614 G4cout.precision(7);
615 for (i=nSecP; i<nSec; i++)
616 {
617 G4cout <<"Particle # " <<i <<G4endl;
620 G4cout <<"New nucleon (T) " <<dyn->GetDefinition()->GetParticleName()
621 <<" : " <<dyn->Get4Momentum()
622 <<G4endl;
623 }
624 G4cout <<"-----------------------" <<G4endl;
625 G4cout <<"The target prefragment:" <<G4endl;
626 G4cout <<"-----------------------" <<G4endl;
627 if (fragmentT != NULL)
628 G4cout <<*fragmentT <<G4endl;
629 else
630 G4cout <<"(No residual prefragment)" <<G4endl;
631 }
632//
633//
634// Now we can decay the nuclear fragments if present. The secondaries are
635// collected and boosted as well. This is performed first for the projectile...
636//
637 if (fragmentP !=NULL)
638 {
639 G4ReactionProductVector *products = NULL;
640 if (fragmentP->GetZ() != fragmentP->GetA())
641 products = theExcitationHandler->BreakItUp(*fragmentP);
642 else
643 products = theExcitationHandlerx->BreakItUp(*fragmentP);
644 delete fragmentP;
645 fragmentP = NULL;
646
647 G4ReactionProductVector::iterator iter;
648 for (iter = products->begin(); iter != products->end(); ++iter)
649 {
650 G4DynamicParticle *secondary =
651 new G4DynamicParticle((*iter)->GetDefinition(),
652 (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
653 theParticleChange.AddSecondary (secondary); // Added MHM 20050118
654 G4String particleName = (*iter)->GetDefinition()->GetParticleName();
655 delete (*iter); // get rid of leftover particle def! // Added MHM 20050118
656 if (verboseLevel >= 2 && particleName.find("[",0) < particleName.size())
657 {
658 G4cout <<"------------------------" <<G4endl;
659 G4cout <<"The projectile fragment:" <<G4endl;
660 G4cout <<"------------------------" <<G4endl;
661 G4cout <<" fragmentP = " <<particleName
662 <<" Energy = " <<secondary->GetKineticEnergy()
663 <<G4endl;
664 }
665 }
666 delete products; // Added MHM 20050118
667 }
668//
669//
670// Now decay the target nucleus - no boost is applied since in this
671// approximation it is assumed that there is negligible momentum transfer from
672// the projectile.
673//
674 if (fragmentT != NULL)
675 {
676 G4ReactionProductVector *products = NULL;
677 if (fragmentT->GetZ() != fragmentT->GetA())
678 products = theExcitationHandler->BreakItUp(*fragmentT);
679 else
680 products = theExcitationHandlerx->BreakItUp(*fragmentT);
681 delete fragmentT;
682 fragmentT = NULL;
683
684 G4ReactionProductVector::iterator iter;
685 for (iter = products->begin(); iter != products->end(); ++iter)
686 {
687 G4DynamicParticle *secondary =
688 new G4DynamicParticle((*iter)->GetDefinition(),
689 (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
691 G4String particleName = (*iter)->GetDefinition()->GetParticleName();
692 delete (*iter); // get rid of leftover particle def! // Added MHM 20050118
693 if (verboseLevel >= 2 && particleName.find("[",0) < particleName.size())
694 {
695 G4cout <<"--------------------" <<G4endl;
696 G4cout <<"The target fragment:" <<G4endl;
697 G4cout <<"--------------------" <<G4endl;
698 G4cout <<" fragmentT = " <<particleName
699 <<" Energy = " <<secondary->GetKineticEnergy()
700 <<G4endl;
701 }
702 }
703 delete products; // Added MHM 20050118
704 }
705
706 if (verboseLevel >= 2)
707 G4cout <<"########################################"
708 <<"########################################"
709 <<G4endl;
710
711 delete theAbrasionGeometry;
712
713 return &theParticleChange;
714}
@ isAlive
@ stopAndKill
CLHEP::HepLorentzVector G4LorentzVector
G4long G4Poisson(G4double mean)
Definition: G4Poisson.hh:50
std::vector< G4ReactionProduct * > G4ReactionProductVector
double G4double
Definition: G4Types.hh:64
long G4long
Definition: G4Types.hh:68
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
double mag2() const
double mag() const
HepLorentzVector & boost(double, double, double)
Hep3Vector vect() const
Hep3Vector findBoostToCM() const
void DumpInfo(G4int mode=0) const
G4ParticleDefinition * GetDefinition() const
G4LorentzVector Get4Momentum() const
G4double GetKineticEnergy() const
void Set4Momentum(const G4LorentzVector &momentum)
G4ReactionProductVector * BreakItUp(const G4Fragment &theInitialState) const
G4double GetGroundStateMass() const
Definition: G4Fragment.hh:240
const G4LorentzVector & GetMomentum() const
Definition: G4Fragment.hh:251
G4double GetZ() const
Definition: G4Fragment.hh:278
G4double GetA() const
Definition: G4Fragment.hh:283
void SetMomentum(const G4LorentzVector &value)
Definition: G4Fragment.hh:256
void SetStatusChange(G4HadFinalStateStatus aS)
G4int GetNumberOfSecondaries() const
void AddSecondary(G4DynamicParticle *aP)
void SetEnergyChange(G4double anEnergy)
G4HadSecondary * GetSecondary(size_t i)
void SetMomentumChange(const G4ThreeVector &aV)
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
G4DynamicParticle * GetParticle()
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
G4double GetEnergyDeposit()
Definition: G4Nucleus.hh:184
G4double AtomicMass(const G4double A, const G4double Z) const
Definition: G4Nucleus.cc:240
G4double GetPDGCharge() const
const G4String & GetParticleName() const
G4double GetWilsonRadius(G4double A)

◆ GetConserveMomentum()

G4bool G4WilsonAbrasionModel::GetConserveMomentum ( )
inline

Definition at line 139 of file G4WilsonAbrasionModel.hh.

140 {return conserveMomentum;}

◆ GetExcitationHandler()

G4ExcitationHandler * G4WilsonAbrasionModel::GetExcitationHandler ( )
inline

Definition at line 124 of file G4WilsonAbrasionModel.hh.

125 {return theExcitationHandler;}

◆ GetUseAblation()

G4bool G4WilsonAbrasionModel::GetUseAblation ( )
inline

Definition at line 127 of file G4WilsonAbrasionModel.hh.

128 {return useAblation;}

◆ ModelDescription()

void G4WilsonAbrasionModel::ModelDescription ( std::ostream &  outFile) const
virtual

Reimplemented from G4HadronicInteraction.

Definition at line 167 of file G4WilsonAbrasionModel.cc.

168{
169 outFile << "G4WilsonAbrasionModel is a macroscopic treatment of\n"
170 << "nucleus-nucleus collisions using simple geometric arguments.\n"
171 << "The smaller projectile nucleus gouges out a part of the larger\n"
172 << "target nucleus, leaving a residual nucleus and a fireball\n"
173 << "region where the projectile and target intersect. The fireball"
174 << "is then treated as a highly excited nuclear fragment. This\n"
175 << "model is based on the NUCFRG2 model and is valid for all\n"
176 << "projectile energies between 70 MeV/n and 10.1 GeV/n. \n";
177}

◆ operator=()

const G4WilsonAbrasionModel & G4WilsonAbrasionModel::operator= ( G4WilsonAbrasionModel right)

◆ SetConserveMomentum()

void G4WilsonAbrasionModel::SetConserveMomentum ( G4bool  conserveMomentum1)
inline

Definition at line 136 of file G4WilsonAbrasionModel.hh.

137 {conserveMomentum = conserveMomentum1;}

◆ SetExcitationHandler()

void G4WilsonAbrasionModel::SetExcitationHandler ( G4ExcitationHandler aExcitationHandler)
inline

Definition at line 121 of file G4WilsonAbrasionModel.hh.

122 {theExcitationHandler = aExcitationHandler;}

◆ SetUseAblation()

void G4WilsonAbrasionModel::SetUseAblation ( G4bool  useAblation1)

Definition at line 875 of file G4WilsonAbrasionModel.cc.

876{
877 if (useAblation != useAblation1)
878 {
879 useAblation = useAblation1;
880 delete theExcitationHandler;
881 delete theExcitationHandlerx;
882 theExcitationHandler = new G4ExcitationHandler;
883 theExcitationHandlerx = new G4ExcitationHandler;
884 if (useAblation)
885 {
886 theAblation = new G4WilsonAblationModel;
887 theAblation->SetVerboseLevel(verboseLevel);
888 theExcitationHandler->SetEvaporation(theAblation);
889 theExcitationHandlerx->SetEvaporation(theAblation);
890 }
891 else
892 {
893 theAblation = NULL;
894 G4Evaporation * theEvaporation = new G4Evaporation;
895 G4FermiBreakUp * theFermiBreakUp = new G4FermiBreakUp;
896 G4StatMF * theMF = new G4StatMF;
897 theExcitationHandler->SetEvaporation(theEvaporation);
898 theExcitationHandler->SetFermiModel(theFermiBreakUp);
899 theExcitationHandler->SetMultiFragmentation(theMF);
900 theExcitationHandler->SetMaxAandZForFermiBreakUp(12, 6);
901 theExcitationHandler->SetMinEForMultiFrag(5.0*MeV);
902
903 theEvaporation = new G4Evaporation;
904 theFermiBreakUp = new G4FermiBreakUp;
905 theExcitationHandlerx->SetEvaporation(theEvaporation);
906 theExcitationHandlerx->SetFermiModel(theFermiBreakUp);
907 theExcitationHandlerx->SetMaxAandZForFermiBreakUp(12, 6);
908 }
909 }
910 return;
911}

◆ SetVerboseLevel()

void G4WilsonAbrasionModel::SetVerboseLevel ( G4int  verboseLevel1)
inline

Definition at line 142 of file G4WilsonAbrasionModel.hh.

143{
144 verboseLevel = verboseLevel1;
145 if (useAblation) theAblation->SetVerboseLevel(verboseLevel);
146}

The documentation for this class was generated from the following files: