66 fLambdaConst = std::sqrt(3.0)*electron_mass_c2/
67 (2.5*fine_structure_const*eplus*c_light);
68 fEnergyConst = 1.5*c_light*c_light*eplus*hbar_Planck/electron_mass_c2 ;
107 if ( gamma < 1.0e3 ) MeanFreePath =
DBL_MAX;
115 G4bool fieldExertsForce =
false;
117 if( (particleCharge != 0.0) )
128 if ( fieldExertsForce )
133 G4double globPosVec[4], FieldValueVec[6];
135 globPosVec[0] = globPosition.
x();
136 globPosVec[1] = globPosition.
y();
137 globPosVec[2] = globPosition.
z();
152 if( perpB > 0.0 ) MeanFreePath = fLambdaConst/perpB;
155 static G4bool FirstTime=
true;
158 G4cout <<
"G4SynchrotronRadiation::GetMeanFreePath :" <<
'\n'
159 <<
" MeanFreePath = " <<
G4BestUnit(MeanFreePath,
"Length")
166 G4double rho= ptot / (MeV * c_light * Btot );
169 <<
" B = " << Btot/tesla <<
" Tesla"
170 <<
" perpB = " << perpB/tesla <<
" Tesla"
171 <<
" Theta = " << Theta <<
" std::sin(Theta)=" << std::sin(Theta) <<
'\n'
201 (aDynamicParticle->
GetMass() );
213 G4bool fieldExertsForce =
false;
215 if( (particleCharge != 0.0) )
225 if ( fieldExertsForce )
229 G4double globPosVec[4], FieldValueVec[6];
230 globPosVec[0] = globPosition.
x();
231 globPosVec[1] = globPosition.
y();
232 globPosVec[2] = globPosition.
z();
251 if( energyOfSR <= 0.0 )
268 fcos = (1 + cosTheta*cosTheta)*0.5;
272 beta = std::sqrt(1. - 1./(gamma*gamma));
274 cosTheta = (cosTheta + beta)/(1. + beta*cosTheta);
276 if( cosTheta > 1. ) cosTheta = 1.;
277 if( cosTheta < -1. ) cosTheta = -1.;
279 sinTheta = std::sqrt(1. - cosTheta*cosTheta );
283 G4double dirx = sinTheta*std::cos(Phi) ,
284 diry = sinTheta*std::sin(Phi) ,
288 gammaDirection.
rotateUz(particleDirection);
297 gammaPolarization = gammaPolarization.
unit();
308 gammaPolarization.
y(),
309 gammaPolarization.
z() );
317 G4double newKinEnergy = kineticEnergy - energyOfSR;
320 if (newKinEnergy > 0.)
344 const G4int ncheb1=27;
346 { 1.22371665676046468821,0.108956475422163837267,0.0383328524358594396134,0.00759138369340257753721,
347 0.00205712048644963340914,0.000497810783280019308661,0.000130743691810302187818,0.0000338168760220395409734,
348 8.97049680900520817728e-6,2.38685472794452241466e-6,6.41923109149104165049e-7,1.73549898982749277843e-7,
349 4.72145949240790029153e-8,1.29039866111999149636e-8,3.5422080787089834182e-9,9.7594757336403784905e-10,
350 2.6979510184976065731e-10,7.480422622550977077e-11,2.079598176402699913e-11,5.79533622220841193e-12,
351 1.61856011449276096e-12,4.529450993473807e-13,1.2698603951096606e-13,3.566117394511206e-14,1.00301587494091e-14,
352 2.82515346447219e-15,7.9680747949792e-16};
354 const G4double aa3=0.9132260271183847;
355 const G4int ncheb2=27;
357 { 1.1139496701107756,0.3523967429328067,0.0713849171926623,0.01475818043595387,0.003381255637322462,
358 0.0008228057599452224,0.00020785506681254216,0.00005390169253706556,0.000014250571923902464,3.823880733161044e-6,
359 1.0381966089136036e-6,2.8457557457837253e-7,7.86223332179956e-8,2.1866609342508474e-8,6.116186259857143e-9,
360 1.7191233618437565e-9,4.852755117740807e-10,1.3749966961763457e-10,3.908961987062447e-11,1.1146253766895824e-11,
361 3.1868887323415814e-12,9.134319791300977e-13,2.6211077371181566e-13,7.588643377757906e-14,2.1528376972619e-14,
362 6.030906040404772e-15,1.9549163926819867e-15};
365 const G4double aa4=2.4444485538746025480,aa5=9.3830728608909477079;
366 const G4int ncheb3=28;
368 { 1.2292683840435586977,0.160353449247864455879,-0.0353559911947559448721,0.00776901561223573936985,
369 -0.00165886451971685133259,0.000335719118906954279467,-0.0000617184951079161143187,9.23534039743246708256e-6,
370 -6.06747198795168022842e-7,-3.07934045961999778094e-7,1.98818772614682367781e-7,-8.13909971567720135413e-8,
371 2.84298174969641838618e-8,-9.12829766621316063548e-9,2.77713868004820551077e-9,-8.13032767247834023165e-10,
372 2.31128525568385247392e-10,-6.41796873254200220876e-11,1.74815310473323361543e-11,-4.68653536933392363045e-12,
373 1.24016595805520752748e-12,-3.24839432979935522159e-13,8.44601465226513952994e-14,-2.18647276044246803998e-14,
374 5.65407548745690689978e-15,-1.46553625917463067508e-15,3.82059606377570462276e-16,-1.00457896653436912508e-16};
375 const G4double aa6=33.122936966163038145;
376 const G4int ncheb4=27;
378 {1.69342658227676741765,0.0742766400841232319225,-0.019337880608635717358,0.00516065527473364110491,
379 -0.00139342012990307729473,0.000378549864052022522193,-0.000103167085583785340215,0.0000281543441271412178337,
380 -7.68409742018258198651e-6,2.09543221890204537392e-6,-5.70493140367526282946e-7,1.54961164548564906446e-7,
381 -4.19665599629607704794e-8,1.13239680054166507038e-8,-3.04223563379021441863e-9,8.13073745977562957997e-10,
382 -2.15969415476814981374e-10,5.69472105972525594811e-11,-1.48844799572430829499e-11,3.84901514438304484973e-12,
383 -9.82222575944247161834e-13,2.46468329208292208183e-13,-6.04953826265982691612e-14,1.44055805710671611984e-14,
384 -3.28200813577388740722e-15,6.96566359173765367675e-16,-1.294122794852896275e-16};
386 if(x<aa2)
return x*x*x*
Chebyshev(aa1,aa2,cheb1,ncheb1,x);
387 else if(x<aa3)
return Chebyshev(aa2,aa3,cheb2,ncheb2,x);
388 else if(x<1-0.0000841363)
390 return y*
Chebyshev(aa4,aa5,cheb3,ncheb3,y);
394 return y*
Chebyshev(aa5,aa6,cheb4,ncheb4,y);
401 G4double Ecr=fEnergyConst*gamma*gamma*perpB;
403 static G4bool FirstTime=
true;
405 {
G4double Emean=8./(15.*std::sqrt(3.))*Ecr;
406 G4double E_rms=std::sqrt(211./675.)*Ecr;
408 G4cout <<
"G4SynchrotronRadiation::GetRandomEnergySR :" <<
'\n' << std::setprecision(4)
409 <<
" Ecr = " <<
G4BestUnit(Ecr,
"Energy") <<
'\n'
410 <<
" Emean = " <<
G4BestUnit(Emean,
"Energy") <<
'\n'
428 G4String comments =
"Incoherent Synchrotron Radiation\n";
430 <<
" good description for long magnets at all energies" <<
G4endl;
G4double condition(const G4ErrorSymMatrix &m)
#define G4BestUnit(a, b)
#define G4_USE_G4BESTUNIT_FOR_VERBOSE 1
CLHEP::Hep3Vector G4ThreeVector
G4DLLIMPORT std::ostream G4cout
G4double fcos(G4double arg)
Hep3Vector cross(const Hep3Vector &) const
Hep3Vector & rotateUz(const Hep3Vector &)
const G4ThreeVector & GetMomentumDirection() const
void SetPolarization(G4double polX, G4double polY, G4double polZ)
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetTotalEnergy() const
G4ThreeVector GetMomentum() const
const G4Field * GetDetectorField() const
virtual void GetFieldValue(const double Point[4], double *fieldArr) const =0
void AddSecondary(G4Track *aSecondary)
void ProposeEnergy(G4double finalEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
virtual void Initialize(const G4Track &)
G4double GetPDGCharge() const
G4FieldManager * FindAndSetFieldManager(G4VPhysicalVolume *pCurrentPhysVol)
G4VParticleChange * PostStepDoIt(const G4Track &track, const G4Step &Step)
void BuildPhysicsTable(const G4ParticleDefinition &)
G4double GetRandomEnergySR(G4double, G4double)
void PrintInfoDefinition()
G4SynchrotronRadiation(const G4String &pName="SynRad", G4ProcessType type=fElectromagnetic)
virtual ~G4SynchrotronRadiation()
G4double Chebyshev(G4double a, G4double b, const G4double c[], G4int n, G4double x)
G4double GetMeanFreePath(const G4Track &track, G4double previousStepSize, G4ForceCondition *condition)
G4double InvSynFracInt(G4double x)
G4VPhysicalVolume * GetVolume() const
const G4ThreeVector & GetPosition() const
G4double GetGlobalTime() const
const G4DynamicParticle * GetDynamicParticle() const
static G4TransportationManager * GetTransportationManager()
G4PropagatorInField * GetPropagatorInField() const
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
void SetNumberOfSecondaries(G4int totSecondaries)
G4ParticleChange aParticleChange
void SetProcessSubType(G4int)
const G4String & GetProcessName() const