Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4SynchrotronRadiation.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// --------------------------------------------------------------
30// GEANT 4 class implementation file
31// CERN Geneva Switzerland
32//
33// History: first implementation,
34// 21-5-98 V.Grichine
35// 28-05-01, V.Ivanchenko minor changes to provide ANSI -wall compilation
36// 04.03.05, V.Grichine: get local field interface
37// 18-05-06 H. Burkhardt: Energy spectrum from function rather than table
38//
39//
40//
41//
42///////////////////////////////////////////////////////////////////////////
43
46#include "G4SystemOfUnits.hh"
47#include "G4UnitsTable.hh"
48#include "G4EmProcessSubType.hh"
49
50///////////////////////////////////////////////////////////////////////
51//
52// Constructor
53//
54
56 G4ProcessType type):G4VDiscreteProcess (processName, type),
57 theGamma (G4Gamma::Gamma() ),
58 theElectron ( G4Electron::Electron() ),
59 thePositron ( G4Positron::Positron() )
60{
61 G4TransportationManager* transportMgr =
63
64 fFieldPropagator = transportMgr->GetPropagatorInField();
65
66 fLambdaConst = std::sqrt(3.0)*electron_mass_c2/
67 (2.5*fine_structure_const*eplus*c_light);
68 fEnergyConst = 1.5*c_light*c_light*eplus*hbar_Planck/electron_mass_c2 ;
69
72}
73
74/////////////////////////////////////////////////////////////////////////
75//
76// Destructor
77//
78
80{}
81
82/////////////////////////////// METHODS /////////////////////////////////
83//
84//
85// Production of synchrotron X-ray photon
86// GEANT4 internal units.
87//
88
89
94{
95 // gives the MeanFreePath in GEANT4 internal units
96 G4double MeanFreePath;
97
98 const G4DynamicParticle* aDynamicParticle = trackData.GetDynamicParticle();
99
101
102 G4double gamma = aDynamicParticle->GetTotalEnergy()/
103 aDynamicParticle->GetMass();
104
105 G4double particleCharge = aDynamicParticle->GetDefinition()->GetPDGCharge();
106
107 if ( gamma < 1.0e3 ) MeanFreePath = DBL_MAX;
108 else
109 {
110
111 G4ThreeVector FieldValue;
112 const G4Field* pField = 0;
113
114 G4FieldManager* fieldMgr=0;
115 G4bool fieldExertsForce = false;
116
117 if( (particleCharge != 0.0) )
118 {
119 fieldMgr = fFieldPropagator->FindAndSetFieldManager( trackData.GetVolume() );
120
121 if ( fieldMgr != 0 )
122 {
123 // If the field manager has no field, there is no field !
124
125 fieldExertsForce = ( fieldMgr->GetDetectorField() != 0 );
126 }
127 }
128 if ( fieldExertsForce )
129 {
130 pField = fieldMgr->GetDetectorField();
131 G4ThreeVector globPosition = trackData.GetPosition();
132
133 G4double globPosVec[4], FieldValueVec[6];
134
135 globPosVec[0] = globPosition.x();
136 globPosVec[1] = globPosition.y();
137 globPosVec[2] = globPosition.z();
138 globPosVec[3] = trackData.GetGlobalTime();
139
140 pField->GetFieldValue( globPosVec, FieldValueVec );
141
142 FieldValue = G4ThreeVector( FieldValueVec[0],
143 FieldValueVec[1],
144 FieldValueVec[2] );
145
146
147
148 G4ThreeVector unitMomentum = aDynamicParticle->GetMomentumDirection();
149 G4ThreeVector unitMcrossB = FieldValue.cross(unitMomentum);
150 G4double perpB = unitMcrossB.mag();
151
152 if( perpB > 0.0 ) MeanFreePath = fLambdaConst/perpB;
153 else MeanFreePath = DBL_MAX;
154
155 static G4bool FirstTime=true;
156 if(verboseLevel > 0 && FirstTime)
157 {
158 G4cout << "G4SynchrotronRadiation::GetMeanFreePath :" << '\n'
159 << " MeanFreePath = " << G4BestUnit(MeanFreePath, "Length")
160 << G4endl;
161 if(verboseLevel > 1)
162 {
163 G4ThreeVector pvec=aDynamicParticle->GetMomentum();
164 G4double Btot=FieldValue.getR();
165 G4double ptot=pvec.getR();
166 G4double rho= ptot / (MeV * c_light * Btot ); // full bending radius
167 G4double Theta=unitMomentum.theta(FieldValue); // angle between particle and field
168 G4cout
169 << " B = " << Btot/tesla << " Tesla"
170 << " perpB = " << perpB/tesla << " Tesla"
171 << " Theta = " << Theta << " std::sin(Theta)=" << std::sin(Theta) << '\n'
172 << " ptot = " << G4BestUnit(ptot,"Energy")
173 << " rho = " << G4BestUnit(rho,"Length")
174 << G4endl;
175 }
176 FirstTime=false;
177 }
178 }
179 else MeanFreePath = DBL_MAX;
180
181
182 }
183
184 return MeanFreePath;
185}
186
187////////////////////////////////////////////////////////////////////////////////
188//
189//
190
193 const G4Step& stepData )
194
195{
196 aParticleChange.Initialize(trackData);
197
198 const G4DynamicParticle* aDynamicParticle=trackData.GetDynamicParticle();
199
200 G4double gamma = aDynamicParticle->GetTotalEnergy()/
201 (aDynamicParticle->GetMass() );
202
203 if(gamma <= 1.0e3 )
204 {
205 return G4VDiscreteProcess::PostStepDoIt(trackData,stepData);
206 }
207 G4double particleCharge = aDynamicParticle->GetDefinition()->GetPDGCharge();
208
209 G4ThreeVector FieldValue;
210 const G4Field* pField = 0;
211
212 G4FieldManager* fieldMgr=0;
213 G4bool fieldExertsForce = false;
214
215 if( (particleCharge != 0.0) )
216 {
217 fieldMgr = fFieldPropagator->FindAndSetFieldManager( trackData.GetVolume() );
218 if ( fieldMgr != 0 )
219 {
220 // If the field manager has no field, there is no field !
221
222 fieldExertsForce = ( fieldMgr->GetDetectorField() != 0 );
223 }
224 }
225 if ( fieldExertsForce )
226 {
227 pField = fieldMgr->GetDetectorField();
228 G4ThreeVector globPosition = trackData.GetPosition();
229 G4double globPosVec[4], FieldValueVec[6];
230 globPosVec[0] = globPosition.x();
231 globPosVec[1] = globPosition.y();
232 globPosVec[2] = globPosition.z();
233 globPosVec[3] = trackData.GetGlobalTime();
234
235 pField->GetFieldValue( globPosVec, FieldValueVec );
236 FieldValue = G4ThreeVector( FieldValueVec[0],
237 FieldValueVec[1],
238 FieldValueVec[2] );
239
240 G4ThreeVector unitMomentum = aDynamicParticle->GetMomentumDirection();
241 G4ThreeVector unitMcrossB = FieldValue.cross(unitMomentum);
242 G4double perpB = unitMcrossB.mag();
243 if(perpB > 0.0)
244 {
245 // M-C of synchrotron photon energy
246
247 G4double energyOfSR = GetRandomEnergySR(gamma,perpB);
248
249 // check against insufficient energy
250
251 if( energyOfSR <= 0.0 )
252 {
253 return G4VDiscreteProcess::PostStepDoIt(trackData,stepData);
254 }
255 G4double kineticEnergy = aDynamicParticle->GetKineticEnergy();
257 particleDirection = aDynamicParticle->GetMomentumDirection();
258
259 // M-C of its direction, simplified dipole boosted approach
260
261 // G4double Teta, fteta; // = G4UniformRand()/gamma; // Very roughly
262
263 G4double cosTheta, sinTheta, fcos, beta;
264
265 do
266 {
267 cosTheta = 1. - 2.*G4UniformRand();
268 fcos = (1 + cosTheta*cosTheta)*0.5;
269 }
270 while( fcos < G4UniformRand() );
271
272 beta = std::sqrt(1. - 1./(gamma*gamma));
273
274 cosTheta = (cosTheta + beta)/(1. + beta*cosTheta);
275
276 if( cosTheta > 1. ) cosTheta = 1.;
277 if( cosTheta < -1. ) cosTheta = -1.;
278
279 sinTheta = std::sqrt(1. - cosTheta*cosTheta );
280
281 G4double Phi = twopi * G4UniformRand();
282
283 G4double dirx = sinTheta*std::cos(Phi) ,
284 diry = sinTheta*std::sin(Phi) ,
285 dirz = cosTheta;
286
287 G4ThreeVector gammaDirection ( dirx, diry, dirz);
288 gammaDirection.rotateUz(particleDirection);
289
290 // polarization of new gamma
291
292 // G4double sx = std::cos(Teta)*std::cos(Phi);
293 // G4double sy = std::cos(Teta)*std::sin(Phi);
294 // G4double sz = -std::sin(Teta);
295
296 G4ThreeVector gammaPolarization = FieldValue.cross(gammaDirection);
297 gammaPolarization = gammaPolarization.unit();
298
299 // (sx, sy, sz);
300 // gammaPolarization.rotateUz(particleDirection);
301
302 // create G4DynamicParticle object for the SR photon
303
304 G4DynamicParticle* aGamma= new G4DynamicParticle ( theGamma,
305 gammaDirection,
306 energyOfSR );
307 aGamma->SetPolarization( gammaPolarization.x(),
308 gammaPolarization.y(),
309 gammaPolarization.z() );
310
311
314
315 // Update the incident particle
316
317 G4double newKinEnergy = kineticEnergy - energyOfSR;
319
320 if (newKinEnergy > 0.)
321 {
322 aParticleChange.ProposeMomentumDirection( particleDirection );
323 aParticleChange.ProposeEnergy( newKinEnergy );
324 }
325 else
326 {
328 }
329 }
330 }
331 return G4VDiscreteProcess::PostStepDoIt(trackData,stepData);
332}
333
334
335/////////////////////////////////////////////////////////////////////////////////
336//
337//
338
340// direct generation
341{
342 // from 0 to 0.7
343 const G4double aa1=0 ,aa2=0.7;
344 const G4int ncheb1=27;
345 static const G4double cheb1[] =
346 { 1.22371665676046468821,0.108956475422163837267,0.0383328524358594396134,0.00759138369340257753721,
347 0.00205712048644963340914,0.000497810783280019308661,0.000130743691810302187818,0.0000338168760220395409734,
348 8.97049680900520817728e-6,2.38685472794452241466e-6,6.41923109149104165049e-7,1.73549898982749277843e-7,
349 4.72145949240790029153e-8,1.29039866111999149636e-8,3.5422080787089834182e-9,9.7594757336403784905e-10,
350 2.6979510184976065731e-10,7.480422622550977077e-11,2.079598176402699913e-11,5.79533622220841193e-12,
351 1.61856011449276096e-12,4.529450993473807e-13,1.2698603951096606e-13,3.566117394511206e-14,1.00301587494091e-14,
352 2.82515346447219e-15,7.9680747949792e-16};
353 // from 0.7 to 0.9132260271183847
354 const G4double aa3=0.9132260271183847;
355 const G4int ncheb2=27;
356 static const G4double cheb2[] =
357 { 1.1139496701107756,0.3523967429328067,0.0713849171926623,0.01475818043595387,0.003381255637322462,
358 0.0008228057599452224,0.00020785506681254216,0.00005390169253706556,0.000014250571923902464,3.823880733161044e-6,
359 1.0381966089136036e-6,2.8457557457837253e-7,7.86223332179956e-8,2.1866609342508474e-8,6.116186259857143e-9,
360 1.7191233618437565e-9,4.852755117740807e-10,1.3749966961763457e-10,3.908961987062447e-11,1.1146253766895824e-11,
361 3.1868887323415814e-12,9.134319791300977e-13,2.6211077371181566e-13,7.588643377757906e-14,2.1528376972619e-14,
362 6.030906040404772e-15,1.9549163926819867e-15};
363 // Chebyshev with exp/log scale
364 // a = -Log[1 - SynFracInt[1]]; b = -Log[1 - SynFracInt[7]];
365 const G4double aa4=2.4444485538746025480,aa5=9.3830728608909477079;
366 const G4int ncheb3=28;
367 static const G4double cheb3[] =
368 { 1.2292683840435586977,0.160353449247864455879,-0.0353559911947559448721,0.00776901561223573936985,
369 -0.00165886451971685133259,0.000335719118906954279467,-0.0000617184951079161143187,9.23534039743246708256e-6,
370 -6.06747198795168022842e-7,-3.07934045961999778094e-7,1.98818772614682367781e-7,-8.13909971567720135413e-8,
371 2.84298174969641838618e-8,-9.12829766621316063548e-9,2.77713868004820551077e-9,-8.13032767247834023165e-10,
372 2.31128525568385247392e-10,-6.41796873254200220876e-11,1.74815310473323361543e-11,-4.68653536933392363045e-12,
373 1.24016595805520752748e-12,-3.24839432979935522159e-13,8.44601465226513952994e-14,-2.18647276044246803998e-14,
374 5.65407548745690689978e-15,-1.46553625917463067508e-15,3.82059606377570462276e-16,-1.00457896653436912508e-16};
375 const G4double aa6=33.122936966163038145;
376 const G4int ncheb4=27;
377 static const G4double cheb4[] =
378 {1.69342658227676741765,0.0742766400841232319225,-0.019337880608635717358,0.00516065527473364110491,
379 -0.00139342012990307729473,0.000378549864052022522193,-0.000103167085583785340215,0.0000281543441271412178337,
380 -7.68409742018258198651e-6,2.09543221890204537392e-6,-5.70493140367526282946e-7,1.54961164548564906446e-7,
381 -4.19665599629607704794e-8,1.13239680054166507038e-8,-3.04223563379021441863e-9,8.13073745977562957997e-10,
382 -2.15969415476814981374e-10,5.69472105972525594811e-11,-1.48844799572430829499e-11,3.84901514438304484973e-12,
383 -9.82222575944247161834e-13,2.46468329208292208183e-13,-6.04953826265982691612e-14,1.44055805710671611984e-14,
384 -3.28200813577388740722e-15,6.96566359173765367675e-16,-1.294122794852896275e-16};
385
386 if(x<aa2) return x*x*x*Chebyshev(aa1,aa2,cheb1,ncheb1,x);
387 else if(x<aa3) return Chebyshev(aa2,aa3,cheb2,ncheb2,x);
388 else if(x<1-0.0000841363)
389 { G4double y=-std::log(1-x);
390 return y*Chebyshev(aa4,aa5,cheb3,ncheb3,y);
391 }
392 else
393 { G4double y=-std::log(1-x);
394 return y*Chebyshev(aa5,aa6,cheb4,ncheb4,y);
395 }
396}
397
399{
400
401 G4double Ecr=fEnergyConst*gamma*gamma*perpB;
402
403 static G4bool FirstTime=true;
404 if(verboseLevel > 0 && FirstTime)
405 { G4double Emean=8./(15.*std::sqrt(3.))*Ecr; // mean photon energy
406 G4double E_rms=std::sqrt(211./675.)*Ecr; // rms of photon energy distribution
407 G4int prec = G4cout.precision();
408 G4cout << "G4SynchrotronRadiation::GetRandomEnergySR :" << '\n' << std::setprecision(4)
409 << " Ecr = " << G4BestUnit(Ecr,"Energy") << '\n'
410 << " Emean = " << G4BestUnit(Emean,"Energy") << '\n'
411 << " E_rms = " << G4BestUnit(E_rms,"Energy") << G4endl;
412 FirstTime=false;
413 G4cout.precision(prec);
414 }
415
416 G4double energySR=Ecr*InvSynFracInt(G4UniformRand());
417 return energySR;
418}
419
420
422{
423 if(0 < verboseLevel && &part==theElectron ) PrintInfoDefinition();
424}
425
426void G4SynchrotronRadiation::PrintInfoDefinition() // not yet called, usually called from BuildPhysicsTable
427{
428 G4String comments ="Incoherent Synchrotron Radiation\n";
429 G4cout << G4endl << GetProcessName() << ": " << comments
430 << " good description for long magnets at all energies" << G4endl;
431}
432
433///////////////////// end of G4SynchrotronRadiation.cc
@ fSynchrotronRadiation
G4double condition(const G4ErrorSymMatrix &m)
G4ForceCondition
@ NotForced
G4ProcessType
#define G4BestUnit(a, b)
#define G4_USE_G4BESTUNIT_FOR_VERBOSE 1
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
G4double fcos(G4double arg)
#define G4UniformRand()
Definition: Randomize.hh:53
double z() const
Hep3Vector unit() const
double theta() const
double x() const
double getR() const
double y() const
Hep3Vector cross(const Hep3Vector &) const
double mag() const
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
G4double GetMass() const
const G4ThreeVector & GetMomentumDirection() const
void SetPolarization(G4double polX, G4double polY, G4double polZ)
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetTotalEnergy() const
G4ThreeVector GetMomentum() const
const G4Field * GetDetectorField() const
virtual void GetFieldValue(const double Point[4], double *fieldArr) const =0
void AddSecondary(G4Track *aSecondary)
void ProposeEnergy(G4double finalEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
virtual void Initialize(const G4Track &)
G4double GetPDGCharge() const
G4FieldManager * FindAndSetFieldManager(G4VPhysicalVolume *pCurrentPhysVol)
Definition: G4Step.hh:78
G4VParticleChange * PostStepDoIt(const G4Track &track, const G4Step &Step)
void BuildPhysicsTable(const G4ParticleDefinition &)
G4double GetRandomEnergySR(G4double, G4double)
G4SynchrotronRadiation(const G4String &pName="SynRad", G4ProcessType type=fElectromagnetic)
G4double Chebyshev(G4double a, G4double b, const G4double c[], G4int n, G4double x)
G4double GetMeanFreePath(const G4Track &track, G4double previousStepSize, G4ForceCondition *condition)
G4double InvSynFracInt(G4double x)
G4VPhysicalVolume * GetVolume() const
const G4ThreeVector & GetPosition() const
G4double GetGlobalTime() const
const G4DynamicParticle * GetDynamicParticle() const
static G4TransportationManager * GetTransportationManager()
G4PropagatorInField * GetPropagatorInField() const
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
void SetNumberOfSecondaries(G4int totSecondaries)
G4ParticleChange aParticleChange
Definition: G4VProcess.hh:289
G4int verboseLevel
Definition: G4VProcess.hh:368
void SetProcessSubType(G4int)
Definition: G4VProcess.hh:403
const G4String & GetProcessName() const
Definition: G4VProcess.hh:379
#define DBL_MAX
Definition: templates.hh:83