Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ErrorFreeTrajState.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// ------------------------------------------------------------
29// GEANT 4 class implementation file
30// ------------------------------------------------------------
31//
32
33#include <iomanip>
34
36#include "G4SystemOfUnits.hh"
37#include "G4Field.hh"
38#include "G4FieldManager.hh"
41#include "G4Material.hh"
46#include "G4ErrorMatrix.hh"
47
48//------------------------------------------------------------------------
49G4ErrorFreeTrajState::G4ErrorFreeTrajState( const G4String& partName, const G4Point3D& pos, const G4Vector3D& mom, const G4ErrorTrajErr& errmat) : G4ErrorTrajState( partName, pos, mom, errmat )
50{
51 fTrajParam = G4ErrorFreeTrajParam( pos, mom );
52 Init();
53}
54
55
56//------------------------------------------------------------------------
57G4ErrorFreeTrajState::G4ErrorFreeTrajState( const G4ErrorSurfaceTrajState& tpSD ) : G4ErrorTrajState( tpSD.GetParticleType(), tpSD.GetPosition(), tpSD.GetMomentum() )
58{
59 // G4ThreeVector planeNormal = tpSD.GetPlaneNormal();
60 // G4double fPt = tpSD.GetMomentum()*planeNormal;//mom projected on normal to plane
61 // G4ErrorSurfaceTrajParam tpSDparam = tpSD.GetParameters();
62 // G4ThreeVector Psc = fPt * planeNormal + tpSDparam.GetPU()*tpSDparam.GetVectorU() + tpSD.GetPV()*tpSD.GetVectorW();
63
65 Init();
66
67 //----- Get the error matrix in SC coordinates
68 G4ErrorSurfaceTrajParam tpSDparam = tpSD.GetParameters();
69 G4double mom = fMomentum.mag();
70 G4double mom2 = fMomentum.mag2();
71 G4double TVW1 = std::sqrt( mom2 / ( mom2 + tpSDparam.GetPV()*tpSDparam.GetPV() + tpSDparam.GetPV()*tpSDparam.GetPV()) );
72 G4ThreeVector vTVW( TVW1, tpSDparam.GetPV()/mom * TVW1, tpSDparam.GetPW()/mom * TVW1 );
73 G4Vector3D vectorU = tpSDparam.GetVectorV().cross( tpSDparam.GetVectorW() );
74 G4Vector3D vTN = vTVW.x()*vectorU + vTVW.y()*tpSDparam.GetVectorV() + vTVW.z()*tpSDparam.GetVectorW();
75
76#ifdef G4EVERBOSE
77 if( iverbose >= 5){
78 G4double pc2 = std::asin( vTN.z() );
79 G4double pc3 = std::atan (vTN.y()/vTN.x());
80
81 G4cout << " CHECK: pc2 " << pc2 << " = " << GetParameters().GetLambda() << " diff " << pc2-GetParameters().GetLambda() << G4endl;
82 G4cout << " CHECK: pc3 " << pc3 << " = " << GetParameters().GetPhi() << " diff " << pc3-GetParameters().GetPhi() << G4endl;
83 }
84#endif
85
86 //--- Get the unit vectors perp to P
87 G4double cosl = std::cos( GetParameters().GetLambda() );
88 if (cosl < 1.E-30) cosl = 1.E-30;
89 G4double cosl1 = 1./cosl;
90 G4Vector3D vUN(-vTN.y()*cosl1, vTN.x()*cosl1, 0. );
91 G4Vector3D vVN(-vTN.z()*vUN.y(), vTN.z()*vUN.x(), cosl );
92
93 G4Vector3D vUperp = G4Vector3D( -fMomentum.y(), fMomentum.x(), 0.);
94 G4Vector3D vVperp = vUperp.cross( fMomentum );
95 vUperp *= 1./vUperp.mag();
96 vVperp *= 1./vVperp.mag();
97
98#ifdef G4EVERBOSE
99 if( iverbose >= 5){
100 G4cout << " CHECK: vUN " << vUN << " = " << vUperp << " diff " << (vUN-vUperp).mag() << G4endl;
101 G4cout << " CHECK: vVN " << vVN << " = " << vVperp << " diff " << (vVN-vVperp).mag() << G4endl;
102 }
103#endif
104
105 //get the dot products of vectors perpendicular to direction and vector defining SD plane
106 G4double dUU = vUperp * tpSD.GetVectorV();
107 G4double dUV = vUperp * tpSD.GetVectorW();
108 G4double dVU = vVperp * tpSD.GetVectorV();
109 G4double dVV = vVperp * tpSD.GetVectorW();
110
111
112 //--- Get transformation first
113 G4ErrorMatrix transfM(5, 5, 1 );
114 //--- Get magnetic field
116 G4ThreeVector dir = fTrajParam.GetDirection();
117 G4double invCosTheta = 1./std::cos( dir.theta() );
118
119 if( fCharge != 0
120&& field ) {
121 G4double pos1[3]; pos1[0] = fPosition.x()*cm; pos1[1] = fPosition.y()*cm; pos1[2] = fPosition.z()*cm;
122 G4double h1[3];
123 field->GetFieldValue( pos1, h1 );
124 G4ThreeVector HPre = G4ThreeVector( h1[0], h1[1], h1[2] ) / tesla *10.;
125 G4double magHPre = HPre.mag();
126 G4double invP = 1./fMomentum.mag();
127 G4double magHPreM = magHPre * invP;
128 if( magHPre != 0. ) {
129 G4double magHPreM2 = fCharge / magHPre;
130
131 G4double Q = -magHPreM * c_light;
132 G4double sinz = -HPre*vUperp * magHPreM2;
133 G4double cosz = HPre*vVperp * magHPreM2;
134
135 transfM[1][3] = -Q*dir.y()*sinz;
136 transfM[1][4] = -Q*dir.z()*sinz;
137 transfM[2][3] = -Q*dir.y()*cosz*invCosTheta;
138 transfM[2][4] = -Q*dir.z()*cosz*invCosTheta;
139 }
140 }
141
142 transfM[0][0] = 1.;
143 transfM[1][1] = dir.x()*dVU;
144 transfM[1][2] = dir.x()*dVV;
145 transfM[2][1] = dir.x()*dUU*invCosTheta;
146 transfM[2][2] = dir.x()*dUV*invCosTheta;
147 transfM[3][3] = dUU;
148 transfM[3][4] = dUV;
149 transfM[4][3] = dVU;
150 transfM[4][4] = dVV;
151
152 fError = G4ErrorTrajErr( tpSD.GetError().similarity( transfM ) );
153
154#ifdef G4EVERBOSE
155 if( iverbose >= 1) G4cout << "error matrix SD2SC " << fError << G4endl;
156 if( iverbose >= 4) G4cout << "G4ErrorFreeTrajState from SD " << *this << G4endl;
157#endif
158}
159
160
161//------------------------------------------------------------------------
162void G4ErrorFreeTrajState::Init()
163{
165 BuildCharge();
166 theTransfMat = G4ErrorMatrix(5,5,0);
167 theFirstStep = true;
168}
169
170//------------------------------------------------------------------------
171void G4ErrorFreeTrajState::Dump( std::ostream& out ) const
172{
173 out << *this;
174}
175
176//------------------------------------------------------------------------
178{
179 G4int ierr = 0;
180 fTrajParam.Update( aTrack );
181 UpdatePosMom( aTrack->GetPosition(), aTrack->GetMomentum() );
182 return ierr;
183}
184
185
186//------------------------------------------------------------------------
187std::ostream& operator<<(std::ostream& out, const G4ErrorFreeTrajState& ts)
188{
189 std::ios::fmtflags orig_flags = out.flags();
190
191 out.setf(std::ios::fixed,std::ios::floatfield);
192
193 ts.DumpPosMomError( out );
194
195 out << " G4ErrorFreeTrajState: Params: " << ts.fTrajParam << G4endl;
196
197 out.flags(orig_flags);
198
199 return out;
200}
201
202
203//------------------------------------------------------------------------
205{
206 G4double stepLengthCm = aTrack->GetStep()->GetStepLength()/cm;
207 if( G4ErrorPropagatorData::GetErrorPropagatorData()->GetStage() == G4ErrorStage_Deflation ) stepLengthCm *= -1.;
208
210
211 if( std::fabs(stepLengthCm) <= kCarTolerance/cm ) return 0;
212
213#ifdef G4EVERBOSE
214 if( iverbose >= 2 )G4cout << " G4ErrorFreeTrajState::PropagateError " << G4endl;
215#endif
216
217 // * *** ERROR PROPAGATION ON A HELIX ASSUMING SC VARIABLES
218 G4Point3D vposPost = aTrack->GetPosition()/cm;
219 G4Vector3D vpPost = aTrack->GetMomentum()/GeV;
220 // G4Point3D vposPre = fPosition/cm;
221 // G4Vector3D vpPre = fMomentum/GeV;
222 G4Point3D vposPre = aTrack->GetStep()->GetPreStepPoint()->GetPosition()/cm;
223 G4Vector3D vpPre = aTrack->GetStep()->GetPreStepPoint()->GetMomentum()/GeV;
224 //correct to avoid propagation along Z
225 if( vpPre.mag() == vpPre.z() ) vpPre.setX( 1.E-6*MeV );
226 if( vpPost.mag() == vpPost.z() ) vpPost.setX( 1.E-6*MeV );
227
228 G4double pPre = vpPre.mag();
229 G4double pPost = vpPost.mag();
230#ifdef G4EVERBOSE
231 if( iverbose >= 2 ) {
232 G4cout << "G4EP: vposPre " << vposPre << G4endl
233 << "G4EP: vposPost " << vposPost << G4endl;
234 G4cout << "G4EP: vpPre " << vpPre << G4endl
235 << "G4EP: vpPost " << vpPost << G4endl;
236 G4cout << " err start step " << fError << G4endl;
237 G4cout << "G4EP: stepLengthCm " << stepLengthCm << G4endl;
238 }
239#endif
240
241 if( pPre == 0. || pPost == 0 ) return 2;
242 G4double pInvPre = 1./pPre;
243 G4double pInvPost = 1./pPost;
244 G4double deltaPInv = pInvPost - pInvPre;
245
246 G4Vector3D vpPreNorm = vpPre * pInvPre;
247 G4Vector3D vpPostNorm = vpPost * pInvPost;
248 // if( iverbose >= 2 ) G4cout << "G4EP: vpPreNorm " << vpPreNorm << " vpPostNorm " << vpPostNorm << G4endl;
249 //return if propagation along Z??
250 if( 1. - std::fabs(vpPostNorm.z()) < kCarTolerance ) return 4;
251 G4double sinpPre = std::sin( vpPreNorm.theta() ); //cosine perpendicular to pPre = sine pPre
252 G4double sinpPost = std::sin( vpPostNorm.theta() ); //cosine perpendicular to pPost = sine pPost
253 G4double sinpPostInv = 1./std::sin( vpPreNorm.theta() );
254
255#ifdef G4EVERBOSE
256 if( iverbose >= 2 ) G4cout << "G4EP: cosl " << sinpPre << " cosl0 " << sinpPost << G4endl;
257#endif
258 //* *** DEFINE TRANSFORMATION MATRIX BETWEEN X1 AND X2 FOR
259 //* *** NEUTRAL PARTICLE OR FIELDFREE REGION
260 G4ErrorMatrix transf(5, 5, 0 );
261
262 transf[3][2] = stepLengthCm * sinpPost;
263 transf[4][1] = stepLengthCm;
264 for( size_t ii=0;ii < 5; ii++ ){
265 transf[ii][ii] = 1.;
266 }
267#ifdef G4EVERBOSE
268 if( iverbose >= 2 ) {
269 G4cout << "G4EP: transf matrix neutral " << transf;
270 }
271#endif
272
273 // charge X propagation direction
274 G4double charge = aTrack->GetDynamicParticle()->GetCharge();
276 charge *= -1.;
277 }
278 // G4cout << " charge " << charge << G4endl;
279 //t check if particle has charge
280 //t if( charge == 0 ) goto 45;
281 // check if the magnetic field is = 0.
282
283 //position is from geant4, it is assumed to be in mm (for debugging, eventually it will not be transformed)
284 G4double pos1[3]; pos1[0] = vposPre.x()*cm; pos1[1] = vposPre.y()*cm; pos1[2] = vposPre.z()*cm;
285 G4double pos2[3]; pos2[0] = vposPost.x()*cm; pos2[1] = vposPost.y()*cm; pos2[2] = vposPost.z()*cm;
286 G4double h1[3], h2[3];
287
289 if( !field ) return 0; //goto 45
290
291 // calculate transformation except it NEUTRAL PARTICLE OR FIELDFREE REGION
292 if( charge != 0. && field ) {
293
294 field->GetFieldValue( pos1, h1 );
295 field->GetFieldValue( pos2, h2 );
296 G4ThreeVector HPre = G4ThreeVector( h1[0], h1[1], h1[2] ) / tesla *10.; //10. is to get same dimensions as GEANT3 (kilogauss)
297 G4ThreeVector HPost= G4ThreeVector( h2[0], h2[1], h2[2] ) / tesla *10.;
298 G4double magHPre = HPre.mag();
299 G4double magHPost = HPost.mag();
300#ifdef G4EVERBOSE
301 if( iverbose >= 2 ) G4cout << "G4EP: HPre " << HPre << G4endl
302 << "G4EP: HPost " << HPost << G4endl;
303#endif
304
305 if( magHPre + magHPost != 0. ) {
306
307 //* *** CHECK WHETHER H*ALFA/P IS TOO DIFFERENT AT X1 AND X2
308 G4double gam;
309 if( magHPost != 0. ){
310 gam = HPost * vpPostNorm / magHPost;
311 }else {
312 gam = HPre * vpPreNorm / magHPre;
313 }
314
315 // G4eMagneticLimitsProcess will limit the step, but based on an straight line trajectory
316 G4double alphaSqr = 1. - gam * gam;
317 G4double diffHSqr = ( HPre * pInvPre - HPost * pInvPost ).mag2();
318 G4double delhp6Sqr = 300.*300.;
319#ifdef G4EVERBOSE
320 if( iverbose >= 2 ) G4cout << " G4EP: gam " << gam << " alphaSqr " << alphaSqr << " diffHSqr " << diffHSqr << G4endl;
321#endif
322 if( diffHSqr * alphaSqr > delhp6Sqr ) return 3;
323
324
325 //* *** DEFINE AVERAGE MAGNETIC FIELD AND GRADIENT
326 G4double pInvAver = 1./(pInvPre + pInvPost );
327 G4double CFACT8 = 2.997925E-4;
328 //G4double HAver
329 G4ThreeVector vHAverNorm( (HPre*pInvPre + HPost*pInvPost ) * pInvAver * charge * CFACT8 );
330 G4double HAver = vHAverNorm.mag();
331 G4double invHAver = 1./HAver;
332 vHAverNorm *= invHAver;
333#ifdef G4EVERBOSE
334 if( iverbose >= 2 ) G4cout << " G4EP: HaverNorm " << vHAverNorm << " magHAver " << HAver << " charge " << charge<< G4endl;
335#endif
336
337 G4double pAver = (pPre+pPost)*0.5;
338 G4double QAver = -HAver/pAver;
339 G4double thetaAver = QAver * stepLengthCm;
340 G4double sinThetaAver = std::sin(thetaAver);
341 G4double cosThetaAver = std::cos(thetaAver);
342 G4double gamma = vHAverNorm * vpPostNorm;
343 G4ThreeVector AN2 = vHAverNorm.cross( vpPostNorm );
344
345#ifdef G4EVERBOSE
346 if( iverbose >= 2 ) G4cout << " G4EP: AN2 " << AN2 << G4endl;
347#endif
348 G4double AU = 1./vpPreNorm.perp();
349 //t G4ThreeVector vU( vpPreNorm.cross( G4ThreeVector(0.,0.,1.) ) * AU );
350 G4ThreeVector vUPre( -AU*vpPreNorm.y(),
351 AU*vpPreNorm.x(),
352 0. );
353 G4ThreeVector vVPre( -vpPreNorm.z()*vUPre.y(),
354 vpPreNorm.z()*vUPre.x(),
355 vpPreNorm.x()*vUPre.y() - vpPreNorm.y()*vUPre.x() );
356
357 //
358 AU = 1./vpPostNorm.perp();
359 //t G4ThreeVector vU( vpPostNorm.cross( G4ThreeVector(0.,0.,1.) ) * AU );
360 G4ThreeVector vUPost( -AU*vpPostNorm.y(),
361 AU*vpPostNorm.x(),
362 0. );
363 G4ThreeVector vVPost( -vpPostNorm.z()*vUPost.y(),
364 vpPostNorm.z()*vUPost.x(),
365 vpPostNorm.x()*vUPost.y() - vpPostNorm.y()*vUPost.x() );
366#ifdef G4EVERBOSE
367 //- G4cout << " vpPostNorm " << vpPostNorm << G4endl;
368 if( iverbose >= 2 ) G4cout << " G4EP: AU " << AU << " vUPre " << vUPre << " vVPre " << vVPre << " vUPost " << vUPost << " vVPost " << vVPost << G4endl;
369#endif
370 G4Point3D deltaPos( vposPre - vposPost );
371
372 // * *** COMPLETE TRANSFORMATION MATRIX BETWEEN ERRORS AT X1 AND X2
373 // * *** FIELD GRADIENT PERPENDICULAR TO TRACK IS PRESENTLY NOT
374 // * *** TAKEN INTO ACCOUNT
375
376 G4double QP = QAver * pAver; // = -HAver
377#ifdef G4EVERBOSE
378 if( iverbose >= 2) G4cout << " G4EP: QP " << QP << " QAver " << QAver << " pAver " << pAver << G4endl;
379#endif
380 G4double ANV = -( vHAverNorm.x()*vUPost.x() + vHAverNorm.y()*vUPost.y() );
381 G4double ANU = ( vHAverNorm.x()*vVPost.x() + vHAverNorm.y()*vVPost.y() + vHAverNorm.z()*vVPost.z() );
382 G4double OMcosThetaAver = 1. - cosThetaAver;
383#ifdef G4EVERBOSE
384 if( iverbose >= 2) G4cout << "G4EP: OMcosThetaAver " << OMcosThetaAver << " cosThetaAver " << cosThetaAver << " thetaAver " << thetaAver << " QAver " << QAver << " stepLengthCm " << stepLengthCm << G4endl;
385#endif
386 G4double TMSINT = thetaAver - sinThetaAver;
387#ifdef G4EVERBOSE
388 if( iverbose >= 2 ) G4cout << " G4EP: ANV " << ANV << " ANU " << ANU << G4endl;
389#endif
390
391 G4ThreeVector vHUPre( -vHAverNorm.z() * vUPre.y(),
392 vHAverNorm.z() * vUPre.x(),
393 vHAverNorm.x() * vUPre.y() - vHAverNorm.y() * vUPre.x() );
394#ifdef G4EVERBOSE
395 // if( iverbose >= 2 ) G4cout << "G4EP: HUPre(1) " << vHUPre.x() << " " << vHAverNorm.z() << " " << vUPre.y() << G4endl;
396#endif
397 G4ThreeVector vHVPre( vHAverNorm.y() * vVPre.z() - vHAverNorm.z() * vVPre.y(),
398 vHAverNorm.z() * vVPre.x() - vHAverNorm.x() * vVPre.z(),
399 vHAverNorm.x() * vVPre.y() - vHAverNorm.y() * vVPre.x() );
400#ifdef G4EVERBOSE
401 if( iverbose >= 2 ) G4cout << " G4EP: HUPre " << vHUPre << " HVPre " << vHVPre << G4endl;
402#endif
403
404 //------------------- COMPUTE MATRIX
405 //---------- 1/P
406
407 transf[0][0] = 1.-deltaPInv*pAver*(1.+(vpPostNorm.x()*deltaPos.x()+vpPostNorm.y()*deltaPos.y()+vpPostNorm.z()*deltaPos.z())/stepLengthCm)
408 +2.*deltaPInv*pAver;
409
410 transf[0][1] = -deltaPInv/thetaAver*
411 ( TMSINT*gamma*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) +
412 sinThetaAver*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z()) +
413 OMcosThetaAver*(vHVPre.x()*vpPostNorm.x()+vHVPre.y()*vpPostNorm.y()+vHVPre.z()*vpPostNorm.z()) );
414
415 transf[0][2] = -sinpPre*deltaPInv/thetaAver*
416 ( TMSINT*gamma*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y() ) +
417 sinThetaAver*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y() ) +
418 OMcosThetaAver*(vHUPre.x()*vpPostNorm.x()+vHUPre.y()*vpPostNorm.y()+vHUPre.z()*vpPostNorm.z()) );
419
420 transf[0][3] = -deltaPInv/stepLengthCm*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y() );
421
422 transf[0][4] = -deltaPInv/stepLengthCm*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z());
423
424 // *** Lambda
425 transf[1][0] = -QP*ANV*(vpPostNorm.x()*deltaPos.x()+vpPostNorm.y()*deltaPos.y()+vpPostNorm.z()*deltaPos.z())
426 *(1.+deltaPInv*pAver);
427#ifdef G4EVERBOSE
428 if(iverbose >= 3) G4cout << "ctransf10= " << transf[1][0] << " " << -QP<< " " << ANV<< " " << vpPostNorm.x()<< " " << deltaPos.x()<< " " << vpPostNorm.y()<< " " << deltaPos.y()<< " " << vpPostNorm.z()<< " " << deltaPos.z()
429 << " " << deltaPInv<< " " << pAver << G4endl;
430#endif
431
432 transf[1][1] = cosThetaAver*(vVPre.x()*vVPost.x()+vVPre.y()*vVPost.y()+vVPre.z()*vVPost.z()) +
433 sinThetaAver*(vHVPre.x()*vVPost.x()+vHVPre.y()*vVPost.y()+vHVPre.z()*vVPost.z()) +
434 OMcosThetaAver*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z())*
435 (vHAverNorm.x()*vVPost.x()+vHAverNorm.y()*vVPost.y()+vHAverNorm.z()*vVPost.z()) +
436 ANV*( -sinThetaAver*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z()) +
437 OMcosThetaAver*(vVPre.x()*AN2.x()+vVPre.y()*AN2.y()+vVPre.z()*AN2.z()) -
438 TMSINT*gamma*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) );
439
440 transf[1][2] = cosThetaAver*(vUPre.x()*vVPost.x()+vUPre.y()*vVPost.y() ) +
441 sinThetaAver*(vHUPre.x()*vVPost.x()+vHUPre.y()*vVPost.y()+vHUPre.z()*vVPost.z()) +
442 OMcosThetaAver*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y() )*
443 (vHAverNorm.x()*vVPost.x()+vHAverNorm.y()*vVPost.y()+vHAverNorm.z()*vVPost.z()) +
444 ANV*( -sinThetaAver*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y() ) +
445 OMcosThetaAver*(vUPre.x()*AN2.x()+vUPre.y()*AN2.y() ) -
446 TMSINT*gamma*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y() ) );
447 transf[1][2] = sinpPre*transf[1][2];
448
449 transf[1][3] = -QAver*ANV*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y() );
450
451 transf[1][4] = -QAver*ANV*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z());
452
453 // *** Phi
454
455 transf[2][0] = -QP*ANU*(vpPostNorm.x()*deltaPos.x()+vpPostNorm.y()*deltaPos.y()+vpPostNorm.z()*deltaPos.z())*sinpPostInv
456 *(1.+deltaPInv*pAver);
457#ifdef G4EVERBOSE
458 if(iverbose >= 3)G4cout <<"ctransf20= " << transf[2][0] <<" "<< -QP<<" "<<ANU<<" "<<vpPostNorm.x()<<" "<<deltaPos.x()<<" "<<vpPostNorm.y()<<" "<<deltaPos.y()<<" "<<vpPostNorm.z()<<" "<<deltaPos.z()<<" "<<sinpPostInv
459 <<" "<<deltaPInv<<" "<<pAver<< G4endl;
460#endif
461 transf[2][1] = cosThetaAver*(vVPre.x()*vUPost.x()+vVPre.y()*vUPost.y() ) +
462 sinThetaAver*(vHVPre.x()*vUPost.x()+vHVPre.y()*vUPost.y() ) +
463 OMcosThetaAver*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z())*
464 (vHAverNorm.x()*vUPost.x()+vHAverNorm.y()*vUPost.y() ) +
465 ANU*( -sinThetaAver*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z()) +
466 OMcosThetaAver*(vVPre.x()*AN2.x()+vVPre.y()*AN2.y()+vVPre.z()*AN2.z()) -
467 TMSINT*gamma*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) );
468 transf[2][1] = sinpPostInv*transf[2][1];
469
470 transf[2][2] = cosThetaAver*(vUPre.x()*vUPost.x()+vUPre.y()*vUPost.y() ) +
471 sinThetaAver*(vHUPre.x()*vUPost.x()+vHUPre.y()*vUPost.y() ) +
472 OMcosThetaAver*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y() )*
473 (vHAverNorm.x()*vUPost.x()+vHAverNorm.y()*vUPost.y() ) +
474 ANU*( -sinThetaAver*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y() ) +
475 OMcosThetaAver*(vUPre.x()*AN2.x()+vUPre.y()*AN2.y() ) -
476 TMSINT*gamma*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y() ) );
477 transf[2][2] = sinpPostInv*sinpPre*transf[2][2];
478
479 transf[2][3] = -QAver*ANU*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y() )*sinpPostInv;
480#ifdef G4EVERBOSE
481 if(iverbose >= 3)G4cout <<"ctransf23= " << transf[2][3] <<" "<< -QAver<<" "<<ANU<<" "<<vUPre.x()<<" "<<vpPostNorm.x()<<" "<< vUPre.y()<<" "<<vpPostNorm.y()<<" "<<sinpPostInv<<G4endl;
482#endif
483
484 transf[2][4] = -QAver*ANU*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z())*sinpPostInv;
485
486 // *** Yt
487
488 transf[3][0] = pAver*(vUPost.x()*deltaPos.x()+vUPost.y()*deltaPos.y() )
489 *(1.+deltaPInv*pAver);
490#ifdef G4EVERBOSE
491 if(iverbose >= 3) G4cout <<"ctransf30= " << transf[3][0] <<" "<< pAver<<" "<<vUPost.x()<<" "<<deltaPos.x()<<" "<<vUPost.y()<<" "<<deltaPos.y()
492 <<" "<<deltaPInv<<" "<<pAver<<G4endl;
493#endif
494
495 transf[3][1] = ( sinThetaAver*(vVPre.x()*vUPost.x()+vVPre.y()*vUPost.y() ) +
496 OMcosThetaAver*(vHVPre.x()*vUPost.x()+vHVPre.y()*vUPost.y() ) +
497 TMSINT*(vHAverNorm.x()*vUPost.x()+vHAverNorm.y()*vUPost.y() )*
498 (vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) )/QAver;
499
500 transf[3][2] = ( sinThetaAver*(vUPre.x()*vUPost.x()+vUPre.y()*vUPost.y() ) +
501 OMcosThetaAver*(vHUPre.x()*vUPost.x()+vHUPre.y()*vUPost.y() ) +
502 TMSINT*(vHAverNorm.x()*vUPost.x()+vHAverNorm.y()*vUPost.y() )*
503 (vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y() ) )*sinpPre/QAver;
504#ifdef G4EVERBOSE
505 if(iverbose >= 3) G4cout <<"ctransf32= " << transf[3][2] <<" "<< sinThetaAver<<" "<<vUPre.x()<<" "<<vUPost.x()<<" "<<vUPre.y()<<" "<<vUPost.y() <<" "<<
506 OMcosThetaAver<<" "<<vHUPre.x()<<" "<<vUPost.x()<<" "<<vHUPre.y()<<" "<<vUPost.y() <<" "<<
507 TMSINT<<" "<<vHAverNorm.x()<<" "<<vUPost.x()<<" "<<vHAverNorm.y()<<" "<<vUPost.y() <<" "<<
508 vHAverNorm.x()<<" "<<vUPre.x()<<" "<<vHAverNorm.y()<<" "<<vUPre.y() <<" "<<sinpPre<<" "<<QAver<<G4endl;
509#endif
510
511 transf[3][3] = (vUPre.x()*vUPost.x()+vUPre.y()*vUPost.y() );
512
513 transf[3][4] = (vVPre.x()*vUPost.x()+vVPre.y()*vUPost.y() );
514
515 // *** Zt
516 transf[4][0] = pAver*(vVPost.x()*deltaPos.x()+vVPost.y()*deltaPos.y()+vVPost.z()*deltaPos.z())
517 *(1.+deltaPInv*pAver);
518
519 transf[4][1] = ( sinThetaAver*(vVPre.x()*vVPost.x()+vVPre.y()*vVPost.y()+vVPre.z()*vVPost.z()) +
520 OMcosThetaAver*(vHVPre.x()*vVPost.x()+vHVPre.y()*vVPost.y()+vHVPre.z()*vVPost.z()) +
521 TMSINT*(vHAverNorm.x()*vVPost.x()+vHAverNorm.y()*vVPost.y()+vHAverNorm.z()*vVPost.z())*
522 (vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) )/QAver;
523#ifdef G4EVERBOSE
524 if(iverbose >= 3)G4cout <<"ctransf41= " << transf[4][1] <<" "<< sinThetaAver<<" "<< OMcosThetaAver <<" "<<TMSINT<<" "<< vVPre <<" "<<vVPost <<" "<<vHVPre<<" "<<vHAverNorm <<" "<< QAver<<G4endl;
525#endif
526
527 transf[4][2] = ( sinThetaAver*(vUPre.x()*vVPost.x()+vUPre.y()*vVPost.y() ) +
528 OMcosThetaAver*(vHUPre.x()*vVPost.x()+vHUPre.y()*vVPost.y()+vHUPre.z()*vVPost.z()) +
529 TMSINT*(vHAverNorm.x()*vVPost.x()+vHAverNorm.y()*vVPost.y()+vHAverNorm.z()*vVPost.z())*
530 (vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y() ) )*sinpPre/QAver;
531
532 transf[4][3] = (vUPre.x()*vVPost.x()+vUPre.y()*vVPost.y() );
533
534 transf[4][4] = (vVPre.x()*vVPost.x()+vVPre.y()*vVPost.y()+vVPre.z()*vVPost.z());
535 // if(iverbose >= 3) G4cout <<"ctransf44= " << transf[4][4] <<" "<< vVPre.x() <<" "<<vVPost.x() <<" "<< vVPre.y() <<" "<< vVPost.y() <<" "<< vVPre.z() <<" "<< vVPost.z() << G4endl;
536
537
538#ifdef G4EVERBOSE
539 if( iverbose >= 1 ) G4cout << "G4EP: transf matrix computed " << transf << G4endl;
540#endif
541 /* for( G4int ii=0;ii<5;ii++){
542 for( G4int jj=0;jj<5;jj++){
543 G4cout << transf[ii][jj] << " ";
544 }
545 G4cout << G4endl;
546 } */
547 }
548 }
549 // end of calculate transformation except it NEUTRAL PARTICLE OR FIELDFREE REGION
550 /* if( iverbose >= 1 ) G4cout << "G4EP: transf not updated but initialized " << theFirstStep << G4endl;
551 if( theFirstStep ) {
552 theTransfMat = transf;
553 theFirstStep = false;
554 }else{
555 theTransfMat = theTransfMat * transf;
556 if( iverbose >= 1 ) G4cout << "G4EP: transf matrix accumulated" << theTransfMat << G4endl;
557 }
558 */
559 theTransfMat = transf;
560#ifdef G4EVERBOSE
561 if( iverbose >= 1 ) G4cout << "G4EP: error matrix before transformation " << fError << G4endl;
562 if( iverbose >= 2 ) G4cout << " tf * err " << theTransfMat * fError << G4endl
563 << " transf matrix " << theTransfMat.T() << G4endl;
564#endif
565
566 fError = fError.similarity(theTransfMat).T();
567 //- fError = transf * fError * transf.T();
568#ifdef G4EVERBOSE
569 if( iverbose >= 1 ) G4cout << "G4EP: error matrix propagated " << fError << G4endl;
570#endif
571
572 //? S = B*S*BT S.similarity(B)
573 //? R = S
574 // not needed * *** TRANSFORM ERROR MATRIX FROM INTERNAL TO EXTERNAL VARIABLES;
575
576 PropagateErrorMSC( aTrack );
577
578 PropagateErrorIoni( aTrack );
579
580 return 0;
581}
582
583
584//------------------------------------------------------------------------
585G4int G4ErrorFreeTrajState::PropagateErrorMSC( const G4Track* aTrack )
586{
587 G4ThreeVector vpPre = aTrack->GetMomentum()/GeV;
588 G4double pPre = vpPre.mag();
589 G4double pBeta = pPre*pPre / (aTrack->GetTotalEnergy()/GeV);
590 G4double stepLengthCm = aTrack->GetStep()->GetStepLength()/cm;
591
592 G4Material* mate = aTrack->GetVolume()->GetLogicalVolume()->GetMaterial();
593 G4double effZ, effA;
594 CalculateEffectiveZandA( mate, effZ, effA );
595
596#ifdef G4EVERBOSE
597 if( iverbose >= 4 ) G4cout << "material " << mate->GetName()
598 //<< " " << mate->GetZ() << " " << mate->GetA()
599 << " " << effZ << " " << effA
600 << " " << mate->GetDensity()/g*mole << " " << mate->GetRadlen()/cm << " " << mate->GetNuclearInterLength()/cm << G4endl;
601#endif
602
603 G4double RI = stepLengthCm / (mate->GetRadlen()/cm);
604#ifdef G4EVERBOSE
605 if( iverbose >= 4 ) G4cout << std::setprecision(6) << std::setw(6) << "G4EP:MSC: RI " << RI << " stepLengthCm " << stepLengthCm << " radlen " << (mate->GetRadlen()/cm) << " " << RI*1.e10 << G4endl;
606#endif
607 G4double charge = aTrack->GetDynamicParticle()->GetCharge();
608 G4double DD = 1.8496E-4*RI*(charge/pBeta * charge/pBeta );
609#ifdef G4EVERBOSE
610 if( iverbose >= 3 ) G4cout << "G4EP:MSC: D*1E6= " << DD*1.E6 <<" pBeta " << pBeta << G4endl;
611#endif
612 G4double S1 = DD*stepLengthCm*stepLengthCm/3.;
613 G4double S2 = DD;
614 G4double S3 = DD*stepLengthCm/2.;
615
616 G4double CLA = std::sqrt( vpPre.x() * vpPre.x() + vpPre.y() * vpPre.y() )/pPre;
617#ifdef G4EVERBOSE
618 if( iverbose >= 2 ) G4cout << std::setw(6) << "G4EP:MSC: RI " << RI << " S1 " << S1 << " S2 " << S2 << " S3 " << S3 << " CLA " << CLA << G4endl;
619#endif
620 fError[1][1] += S2;
621 fError[1][4] -= S3;
622 fError[2][2] += S2/CLA/CLA;
623 fError[2][3] += S3/CLA;
624 fError[3][3] += S1;
625 fError[4][4] += S1;
626
627#ifdef G4EVERBOSE
628 if( iverbose >= 2 ) G4cout << "G4EP:MSC: error matrix propagated msc " << fError << G4endl;
629#endif
630
631 return 0;
632}
633
634
635//------------------------------------------------------------------------
636void G4ErrorFreeTrajState::CalculateEffectiveZandA( const G4Material* mate, G4double& effZ, G4double& effA )
637{
638 effZ = 0.;
639 effA = 0.;
640 G4int ii, nelem = mate->GetNumberOfElements();
641 const G4double* fracVec = mate->GetFractionVector();
642 for(ii=0; ii < nelem; ii++ ) {
643 effZ += mate->GetElement( ii )->GetZ() * fracVec[ii];
644 effA += mate->GetElement( ii )->GetA() * fracVec[ii] /g*mole;
645 }
646
647}
648
649
650//------------------------------------------------------------------------
651G4int G4ErrorFreeTrajState::PropagateErrorIoni( const G4Track* aTrack )
652{
653 G4double stepLengthCm = aTrack->GetStep()->GetStepLength()/cm;
654#ifdef G4EVERBOSE
655 G4double DEDX2;
656 if( stepLengthCm < 1.E-7 ) {
657 DEDX2=0.;
658 }
659#endif
660 // * Calculate xi factor (KeV).
661 G4Material* mate = aTrack->GetVolume()->GetLogicalVolume()->GetMaterial();
662 G4double effZ, effA;
663 CalculateEffectiveZandA( mate, effZ, effA );
664
665 G4double Etot = aTrack->GetTotalEnergy()/GeV;
666 G4double beta = aTrack->GetMomentum().mag()/GeV / Etot;
667 G4double mass = aTrack->GetDynamicParticle()->GetMass() / GeV;
668 G4double gamma = Etot / mass;
669
670 // * Calculate xi factor (KeV).
671 G4double XI = 153.5*effZ*stepLengthCm*(mate->GetDensity()/mg*mole) /
672 (effA*beta*beta);
673
674#ifdef G4EVERBOSE
675 if( iverbose >= 2 ){
676 G4cout << "G4EP:IONI: XI " << XI << " beta " << beta << " gamma " << gamma << G4endl;
677 G4cout << " density " << (mate->GetDensity()/mg*mole) << " effA " << effA << " step " << stepLengthCm << G4endl;
678 }
679#endif
680 // * Maximum energy transfer to atomic electron (KeV).
681 G4double eta = beta*gamma;
682 G4double etasq = eta*eta;
683 G4double eMass = 0.51099906/GeV;
684 G4double massRatio = eMass / mass;
685 G4double F1 = 2*eMass*etasq;
686 G4double F2 = 1. + 2. * massRatio * gamma + massRatio * massRatio;
687 G4double Emax = 1.E+6*F1/F2;
688
689 // * *** and now sigma**2 in GeV
690 G4double dedxSq = XI*Emax*(1.-(beta*beta/2.))*1.E-12;
691#ifdef G4EVERBOSE
692 if( iverbose >= 2 ) G4cout << "G4EP:IONI: DEDX2 " << dedxSq << " emass " << eMass << " Emax " << Emax << G4endl;
693#endif
694
695 G4double pPre6 = (aTrack->GetStep()->GetPreStepPoint()->GetMomentum()/GeV).mag();
696 pPre6 = std::pow(pPre6, 6 );
697 //Apply it to error
698 fError[0][0] += Etot*Etot*dedxSq / pPre6;
699#ifdef G4EVERBOSE
700 if( iverbose >= 2 ) G4cout << "G4:IONI getot " << Etot << " dedx2 " << dedxSq << " p " << pPre6 << G4endl;
701 if( iverbose >= 2 ) G4cout << "G4EP:IONI: error_from_ionisation " << (Etot*Etot*dedxSq) / pPre6 << G4endl;
702#endif
703
704 return 0;
705}
706
std::ostream & operator<<(std::ostream &out, const G4ErrorFreeTrajState &ts)
@ G4ErrorMode_PropBackwards
@ G4ErrorStage_Deflation
G4ErrorSymMatrix G4ErrorTrajErr
@ G4eTS_FREE
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
HepGeom::Vector3D< G4double > G4Vector3D
Definition: G4Vector3D.hh:35
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
double z() const
double theta() const
double x() const
double y() const
Hep3Vector cross(const Hep3Vector &) const
double mag() const
G4double GetMass() const
G4double GetCharge() const
G4double GetZ() const
Definition: G4Element.hh:131
G4double GetA() const
Definition: G4Element.hh:138
void Update(const G4Track *aTrack)
G4double GetLambda() const
G4Vector3D GetDirection() const
virtual G4int Update(const G4Track *aTrack)
virtual G4int PropagateError(const G4Track *aTrack)
G4ErrorFreeTrajParam GetParameters() const
virtual void Dump(std::ostream &out=G4cout) const
G4ErrorMatrix T() const
static G4ErrorPropagatorData * GetErrorPropagatorData()
G4ErrorSurfaceTrajParam GetParameters() const
G4ErrorSymMatrix similarity(const G4ErrorMatrix &m1) const
G4ErrorSymMatrix T() const
void DumpPosMomError(std::ostream &out=G4cout) const
G4ErrorTrajErr fError
void UpdatePosMom(const G4Point3D &pos, const G4Vector3D &mom)
G4ErrorTrajErr GetError() const
const G4Field * GetDetectorField() const
virtual void GetFieldValue(const double Point[4], double *fieldArr) const =0
G4double GetSurfaceTolerance() const
static G4GeometryTolerance * GetInstance()
G4Material * GetMaterial() const
G4double GetDensity() const
Definition: G4Material.hh:179
const G4Element * GetElement(G4int iel) const
Definition: G4Material.hh:201
const G4double * GetFractionVector() const
Definition: G4Material.hh:193
size_t GetNumberOfElements() const
Definition: G4Material.hh:185
G4double GetRadlen() const
Definition: G4Material.hh:219
const G4String & GetName() const
Definition: G4Material.hh:177
G4double GetNuclearInterLength() const
Definition: G4Material.hh:222
G4ThreeVector GetMomentum() const
const G4ThreeVector & GetPosition() const
G4StepPoint * GetPreStepPoint() const
G4double GetStepLength() const
G4VPhysicalVolume * GetVolume() const
const G4ThreeVector & GetPosition() const
G4ThreeVector GetMomentum() const
const G4DynamicParticle * GetDynamicParticle() const
G4double GetTotalEnergy() const
const G4Step * GetStep() const
static G4TransportationManager * GetTransportationManager()
G4FieldManager * GetFieldManager() const
G4LogicalVolume * GetLogicalVolume() const
BasicVector3D< T > cross(const BasicVector3D< T > &v) const