Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PenelopeBremsstrahlungAngular.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// --------------------------------------------------------------
29//
30// File name: G4PenelopeBremsstrahlungAngular
31//
32// Author: Luciano Pandola
33//
34// Creation date: November 2010
35//
36// History:
37// -----------
38// 23 Nov 2010 L. Pandola 1st implementation
39// 24 May 2011 L. Pandola Renamed (make v2008 as default Penelope)
40// 13 Mar 2012 L. Pandola Made a derived class of G4VEmAngularDistribution
41// and update the interface accordingly
42// 18 Jul 2012 L. Pandola Migrated to the new basic interface of G4VEmAngularDistribution
43// Now returns a G4ThreeVector and takes care of the rotation
44//
45//----------------------------------------------------------------
46
48
49#include "globals.hh"
51#include "G4SystemOfUnits.hh"
53#include "G4PhysicsTable.hh"
54#include "G4Material.hh"
55#include "Randomize.hh"
56
58 G4VEmAngularDistribution("Penelope"), theEffectiveZSq(0),
59 theLorentzTables1(0),theLorentzTables2(0)
60
61{
62 dataRead = false;
63 verbosityLevel = 0;
64}
65
66//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
67
69{
70 ClearTables();
71}
72
73//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
74
76{
77 ClearTables();
78}
79
80//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
81
82void G4PenelopeBremsstrahlungAngular::ClearTables()
83{
84 std::map<G4double,G4PhysicsTable*>::iterator j;
85
86 if (theLorentzTables1)
87 {
88 for (j=theLorentzTables1->begin(); j != theLorentzTables1->end(); j++)
89 {
90 G4PhysicsTable* tab = j->second;
91 tab->clearAndDestroy();
92 delete tab;
93 }
94 delete theLorentzTables1;
95 theLorentzTables1 = 0;
96 }
97
98 if (theLorentzTables2)
99 {
100 for (j=theLorentzTables2->begin(); j != theLorentzTables2->end(); j++)
101 {
102 G4PhysicsTable* tab = j->second;
103 tab->clearAndDestroy();
104 delete tab;
105 }
106 delete theLorentzTables2;
107 theLorentzTables2 = 0;
108 }
109 if (theEffectiveZSq)
110 {
111 delete theEffectiveZSq;
112 theEffectiveZSq = 0;
113 }
114}
115
116//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
117
118void G4PenelopeBremsstrahlungAngular::ReadDataFile()
119{
120 //Read information from DataBase file
121 char* path = getenv("G4LEDATA");
122 if (!path)
123 {
124 G4String excep =
125 "G4PenelopeBremsstrahlungAngular - G4LEDATA environment variable not set!";
126 G4Exception("G4PenelopeBremsstrahlungAngular::ReadDataFile()",
127 "em0006",FatalException,excep);
128 return;
129 }
130 G4String pathString(path);
131 G4String pathFile = pathString + "/penelope/bremsstrahlung/pdbrang.p08";
132 std::ifstream file(pathFile);
133
134 if (!file.is_open())
135 {
136 G4String excep = "G4PenelopeBremsstrahlungAngular - data file " + pathFile + " not found!";
137 G4Exception("G4PenelopeBremsstrahlungAngular::ReadDataFile()",
138 "em0003",FatalException,excep);
139 return;
140 }
141 G4int i=0,j=0,k=0; // i=index for Z, j=index for E, k=index for K
142
143 for (k=0;k<NumberofKPoints;k++)
144 for (i=0;i<NumberofZPoints;i++)
145 for (j=0;j<NumberofEPoints;j++)
146 {
147 G4double a1,a2;
148 G4int ik1,iz1,ie1;
149 G4double zr,er,kr;
150 file >> iz1 >> ie1 >> ik1 >> zr >> er >> kr >> a1 >> a2;
151 //check the data are correct
152 if ((iz1-1 == i) && (ik1-1 == k) && (ie1-1 == j))
153 {
154 QQ1[i][j][k]=a1;
155 QQ2[i][j][k]=a2;
156 }
157 else
158 {
160 ed << "Corrupted data file " << pathFile << "?" << G4endl;
161 G4Exception("G4PenelopeBremsstrahlungAngular::ReadDataFile()",
162 "em0005",FatalException,ed);
163 }
164 }
165 file.close();
166 dataRead = true;
167}
168
169//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
170
171void G4PenelopeBremsstrahlungAngular::PrepareInterpolationTables(G4double Zmat)
172{
173 //Check if data file has already been read
174 if (!dataRead)
175 {
176 ReadDataFile();
177 if (!dataRead)
178 G4Exception("G4PenelopeBremsstrahlungAngular::PrepareInterpolationTables()",
179 "em2001",FatalException,"Unable to build interpolation table");
180 }
181
182 const G4int reducedEnergyGrid=21;
183 //Support arrays.
184 G4double betas[NumberofEPoints]; //betas for interpolation
185 //tables for interpolation
186 G4double Q1[NumberofEPoints][NumberofKPoints];
187 G4double Q2[NumberofEPoints][NumberofKPoints];
188 //expanded tables for interpolation
189 G4double Q1E[NumberofEPoints][reducedEnergyGrid];
190 G4double Q2E[NumberofEPoints][reducedEnergyGrid];
191 G4double pZ[NumberofZPoints] = {2.0,8.0,13.0,47.0,79.0,92.0};
192
193 G4int i=0,j=0,k=0; // i=index for Z, j=index for E, k=index for K
194 //Interpolation in Z
195 for (i=0;i<NumberofEPoints;i++)
196 {
197 for (j=0;j<NumberofKPoints;j++)
198 {
199 G4PhysicsFreeVector* QQ1vector = new G4PhysicsFreeVector(NumberofZPoints);
200 QQ1vector->SetSpline(true);
201 G4PhysicsFreeVector* QQ2vector = new G4PhysicsFreeVector(NumberofZPoints);
202 QQ2vector->SetSpline(true);
203
204 //fill vectors
205 for (k=0;k<NumberofZPoints;k++)
206 {
207 QQ1vector->PutValue(k,pZ[k],std::log(QQ1[k][i][j]));
208 QQ2vector->PutValue(k,pZ[k],QQ2[k][i][j]);
209 }
210
211 Q1[i][j]= std::exp(QQ1vector->Value(Zmat));
212 Q2[i][j]=QQ2vector->Value(Zmat);
213 delete QQ1vector;
214 delete QQ2vector;
215 }
216 }
217 G4double pE[NumberofEPoints] = {1.0e-03*MeV,5.0e-03*MeV,1.0e-02*MeV,5.0e-02*MeV,
218 1.0e-01*MeV,5.0e-01*MeV};
219 G4double pK[NumberofKPoints] = {0.0,0.6,0.8,0.95};
220 G4double ppK[reducedEnergyGrid];
221
222 for(i=0;i<reducedEnergyGrid;i++)
223 ppK[i]=((G4double) i) * 0.05;
224
225
226 for(i=0;i<NumberofEPoints;i++)
227 betas[i]=std::sqrt(pE[i]*(pE[i]+2*electron_mass_c2))/(pE[i]+electron_mass_c2);
228
229
230 for (i=0;i<NumberofEPoints;i++)
231 {
232 for (j=0;j<NumberofKPoints;j++)
233 Q1[i][j]=Q1[i][j]/Zmat;
234 }
235
236 //Expanded table of distribution parameters
237 for (i=0;i<NumberofEPoints;i++)
238 {
239 G4PhysicsFreeVector* Q1vector = new G4PhysicsFreeVector(NumberofKPoints);
240 G4PhysicsFreeVector* Q2vector = new G4PhysicsFreeVector(NumberofKPoints);
241
242 for (j=0;j<NumberofKPoints;j++)
243 {
244 Q1vector->PutValue(j,pK[j],std::log(Q1[i][j])); //logarithmic
245 Q2vector->PutValue(j,pK[j],Q2[i][j]);
246 }
247
248 for (j=0;j<reducedEnergyGrid;j++)
249 {
250 Q1E[i][j]=Q1vector->Value(ppK[j]);
251 Q2E[i][j]=Q2vector->Value(ppK[j]);
252 }
253 delete Q1vector;
254 delete Q2vector;
255 }
256 //
257 //TABLES to be stored
258 //
259 G4PhysicsTable* theTable1 = new G4PhysicsTable();
260 G4PhysicsTable* theTable2 = new G4PhysicsTable();
261 // the table will contain reducedEnergyGrid G4PhysicsFreeVectors with different
262 // values of k,
263 // Each of the G4PhysicsFreeVectors has a profile of
264 // y vs. E
265 //
266 //reserve space of the vectors.
267 for (j=0;j<reducedEnergyGrid;j++)
268 {
269 G4PhysicsFreeVector* thevec = new G4PhysicsFreeVector(NumberofEPoints);
270 thevec->SetSpline(true);
271 theTable1->push_back(thevec);
272 G4PhysicsFreeVector* thevec2 = new G4PhysicsFreeVector(NumberofEPoints);
273 thevec2->SetSpline(true);
274 theTable2->push_back(thevec2);
275 }
276
277 for (j=0;j<reducedEnergyGrid;j++)
278 {
279 G4PhysicsFreeVector* thevec = (G4PhysicsFreeVector*) (*theTable1)[j];
280 G4PhysicsFreeVector* thevec2 = (G4PhysicsFreeVector*) (*theTable2)[j];
281 for (i=0;i<NumberofEPoints;i++)
282 {
283 thevec->PutValue(i,betas[i],Q1E[i][j]);
284 thevec2->PutValue(i,betas[i],Q2E[i][j]);
285 }
286 }
287
288 if (theLorentzTables1 && theLorentzTables2)
289 {
290 theLorentzTables1->insert(std::make_pair(Zmat,theTable1));
291 theLorentzTables2->insert(std::make_pair(Zmat,theTable2));
292 }
293 else
294 {
296 ed << "Unable to create tables of Lorentz coefficients for " << G4endl;
297 ed << "<Z>= " << Zmat << " in G4PenelopeBremsstrahlungAngular" << G4endl;
298 delete theTable1;
299 delete theTable2;
300 G4Exception("G4PenelopeBremsstrahlungAngular::PrepareInterpolationTables()",
301 "em2005",FatalException,ed);
302 }
303
304 return;
305}
306
307//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
308
310 G4double eGamma,
311 G4int,
312 const G4Material* material)
313{
314 if (!material)
315 {
316 G4Exception("G4PenelopeBremsstrahlungAngular::SampleDirection()",
317 "em2040",FatalException,"The pointer to G4Material* is NULL");
318 return fLocalDirection;
319 }
320
321 G4double Zmat = GetEffectiveZ(material);
322 if (verbosityLevel > 0)
323 {
324 G4cout << "Effective <Z> for material : " << material->GetName() <<
325 " = " << Zmat << G4endl;
326 }
327
328 G4double ePrimary = dp->GetKineticEnergy();
329
330 G4double beta = std::sqrt(ePrimary*(ePrimary+2*electron_mass_c2))/
331 (ePrimary+electron_mass_c2);
332 G4double cdt = 0;
333 G4double sinTheta = 0;
334 G4double phi = 0;
335
336 //Use a pure dipole distribution for energy above 500 keV
337 if (ePrimary > 500*keV)
338 {
339 cdt = 2.0*G4UniformRand() - 1.0;
340 if (G4UniformRand() > 0.75)
341 {
342 if (cdt<0)
343 cdt = -1.0*std::pow(-cdt,1./3.);
344 else
345 cdt = std::pow(cdt,1./3.);
346 }
347 cdt = (cdt+beta)/(1.0+beta*cdt);
348 //Get primary kinematics
349 sinTheta = std::sqrt(1. - cdt*cdt);
350 phi = twopi * G4UniformRand();
351 fLocalDirection.set(sinTheta* std::cos(phi),
352 sinTheta* std::sin(phi),
353 cdt);
354 //rotate
356 //return
357 return fLocalDirection;
358 }
359
360 //Else, retrieve tables and go through the full thing
361 if (!theLorentzTables1)
362 theLorentzTables1 = new std::map<G4double,G4PhysicsTable*>;
363 if (!theLorentzTables2)
364 theLorentzTables2 = new std::map<G4double,G4PhysicsTable*>;
365
366 //Check if tables exist for the given Zmat
367 if (!(theLorentzTables1->count(Zmat)))
368 PrepareInterpolationTables(Zmat);
369
370 if (!(theLorentzTables1->count(Zmat)) || !(theLorentzTables2->count(Zmat)))
371 {
373 ed << "Unable to retrieve Lorentz tables for Z= " << Zmat << G4endl;
374 G4Exception("G4PenelopeBremsstrahlungAngular::SampleDirection()",
375 "em2006",FatalException,ed);
376 }
377
378 //retrieve actual tables
379 G4PhysicsTable* theTable1 = theLorentzTables1->find(Zmat)->second;
380 G4PhysicsTable* theTable2 = theLorentzTables2->find(Zmat)->second;
381
382 G4double RK=20.0*eGamma/ePrimary;
383 G4int ik=std::min((G4int) RK,19);
384
385 G4double P10=0,P11=0,P1=0;
386 G4double P20=0,P21=0,P2=0;
387
388 //First coefficient
389 G4PhysicsFreeVector* v1 = (G4PhysicsFreeVector*) (*theTable1)[ik];
390 G4PhysicsFreeVector* v2 = (G4PhysicsFreeVector*) (*theTable1)[ik+1];
391 P10 = v1->Value(beta);
392 P11 = v2->Value(beta);
393 P1=P10+(RK-(G4double) ik)*(P11-P10);
394
395 //Second coefficient
396 G4PhysicsFreeVector* v3 = (G4PhysicsFreeVector*) (*theTable2)[ik];
397 G4PhysicsFreeVector* v4 = (G4PhysicsFreeVector*) (*theTable2)[ik+1];
398 P20=v3->Value(beta);
399 P21=v4->Value(beta);
400 P2=P20+(RK-(G4double) ik)*(P21-P20);
401
402 //Sampling from the Lorenz-trasformed dipole distributions
403 P1=std::min(std::exp(P1)/beta,1.0);
404 G4double betap = std::min(std::max(beta*(1.0+P2/beta),0.0),0.9999);
405
406 G4double testf=0;
407
408 if (G4UniformRand() < P1)
409 {
410 do{
411 cdt = 2.0*G4UniformRand()-1.0;
412 testf=2.0*G4UniformRand()-(1.0+cdt*cdt);
413 }while(testf>0);
414 }
415 else
416 {
417 do{
418 cdt = 2.0*G4UniformRand()-1.0;
419 testf=G4UniformRand()-(1.0-cdt*cdt);
420 }while(testf>0);
421 }
422 cdt = (cdt+betap)/(1.0+betap*cdt);
423
424 //Get primary kinematics
425 sinTheta = std::sqrt(1. - cdt*cdt);
426 phi = twopi * G4UniformRand();
427 fLocalDirection.set(sinTheta* std::cos(phi),
428 sinTheta* std::sin(phi),
429 cdt);
430 //rotate
432 //return
433 return fLocalDirection;
434
435}
436
437//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
438
440 const G4double ,
441 const G4int )
442{
443 G4cout << "WARNING: G4PenelopeBremsstrahlungAngular() does NOT support PolarAngle()" << G4endl;
444 G4cout << "Please use the alternative interface SampleDirection()" << G4endl;
445 G4Exception("G4PenelopeBremsstrahlungAngular::PolarAngle()",
446 "em0005",FatalException,"Unsupported interface");
447 return 0;
448}
449
450//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
451
452G4double G4PenelopeBremsstrahlungAngular::GetEffectiveZ(const G4Material* material)
453{
454 if (!theEffectiveZSq)
455 theEffectiveZSq = new std::map<const G4Material*,G4double>;
456
457 //found in the table: return it
458 if (theEffectiveZSq->count(material))
459 return theEffectiveZSq->find(material)->second;
460
461 //not found: calculate and return
462 //Helper for the calculation
463 std::vector<G4double> *StechiometricFactors = new std::vector<G4double>;
464 G4int nElements = material->GetNumberOfElements();
465 const G4ElementVector* elementVector = material->GetElementVector();
466 const G4double* fractionVector = material->GetFractionVector();
467 for (G4int i=0;i<nElements;i++)
468 {
469 G4double fraction = fractionVector[i];
470 G4double atomicWeigth = (*elementVector)[i]->GetA()/(g/mole);
471 StechiometricFactors->push_back(fraction/atomicWeigth);
472 }
473 //Find max
474 G4double MaxStechiometricFactor = 0.;
475 for (G4int i=0;i<nElements;i++)
476 {
477 if ((*StechiometricFactors)[i] > MaxStechiometricFactor)
478 MaxStechiometricFactor = (*StechiometricFactors)[i];
479 }
480 //Normalize
481 for (G4int i=0;i<nElements;i++)
482 (*StechiometricFactors)[i] /= MaxStechiometricFactor;
483
484 G4double sumz2 = 0;
485 G4double sums = 0;
486 for (G4int i=0;i<nElements;i++)
487 {
488 G4double Z = (*elementVector)[i]->GetZ();
489 sumz2 += (*StechiometricFactors)[i]*Z*Z;
490 sums += (*StechiometricFactors)[i];
491 }
492 delete StechiometricFactors;
493
494 G4double ZBR = std::sqrt(sumz2/sums);
495 theEffectiveZSq->insert(std::make_pair(material,ZBR));
496
497 return ZBR;
498}
std::vector< G4Element * > G4ElementVector
@ FatalException
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
void set(double x, double y, double z)
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:189
const G4double * GetFractionVector() const
Definition: G4Material.hh:193
size_t GetNumberOfElements() const
Definition: G4Material.hh:185
const G4String & GetName() const
Definition: G4Material.hh:177
G4ThreeVector & SampleDirection(const G4DynamicParticle *dp, G4double out_energy, G4int Z, const G4Material *mat=0)
G4double PolarAngle(const G4double initial_energy, const G4double final_energy, const G4int Z)
void Initialize()
The Initialize() method forces the cleaning of tables.
void PutValue(size_t binNumber, G4double binValue, G4double dataValue)
void push_back(G4PhysicsVector *)
void clearAndDestroy()
G4double Value(G4double theEnergy)
void SetSpline(G4bool)
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
std::ostringstream G4ExceptionDescription
Definition: globals.hh:76