Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4RPGKMinusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28
31#include "G4SystemOfUnits.hh"
32#include "Randomize.hh"
33
36 G4Nucleus &targetNucleus )
37{
38 const G4HadProjectile *originalIncident = &aTrack;
39 if (originalIncident->GetKineticEnergy()<= 0.1*MeV)
40 {
44 return &theParticleChange;
45 }
46
47 // create the target particle
48
49 G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
50 G4ReactionProduct targetParticle( originalTarget->GetDefinition() );
51
52 if( verboseLevel > 1 )
53 {
54 const G4Material *targetMaterial = aTrack.GetMaterial();
55 G4cout << "G4RPGKMinusInelastic::ApplyYourself called" << G4endl;
56 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy() << "MeV, ";
57 G4cout << "target material = " << targetMaterial->GetName() << ", ";
58 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
59 << G4endl;
60 }
61 G4ReactionProduct currentParticle( const_cast<G4ParticleDefinition *>(originalIncident->GetDefinition()) );
62 currentParticle.SetMomentum( originalIncident->Get4Momentum().vect() );
63 currentParticle.SetKineticEnergy( originalIncident->GetKineticEnergy() );
64
65 // Fermi motion and evaporation
66 // As of Geant3, the Fermi energy calculation had not been Done
67
68 G4double ek = originalIncident->GetKineticEnergy();
69 G4double amas = originalIncident->GetDefinition()->GetPDGMass();
70
71 G4double tkin = targetNucleus.Cinema( ek );
72 ek += tkin;
73 currentParticle.SetKineticEnergy( ek );
74 G4double et = ek + amas;
75 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
76 G4double pp = currentParticle.GetMomentum().mag();
77 if( pp > 0.0 )
78 {
79 G4ThreeVector momentum = currentParticle.GetMomentum();
80 currentParticle.SetMomentum( momentum * (p/pp) );
81 }
82
83 // calculate black track energies
84
85 tkin = targetNucleus.EvaporationEffects( ek );
86 ek -= tkin;
87 currentParticle.SetKineticEnergy( ek );
88 et = ek + amas;
89 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
90 pp = currentParticle.GetMomentum().mag();
91 if( pp > 0.0 )
92 {
93 G4ThreeVector momentum = currentParticle.GetMomentum();
94 currentParticle.SetMomentum( momentum * (p/pp) );
95 }
96
97 G4ReactionProduct modifiedOriginal = currentParticle;
98
99 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
100 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
101 G4bool incidentHasChanged = false;
102 G4bool targetHasChanged = false;
103 G4bool quasiElastic = false;
104 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
105 G4int vecLen = 0;
106 vec.Initialize( 0 );
107
108 const G4double cutOff = 0.1*MeV;
109 if( currentParticle.GetKineticEnergy() > cutOff )
110 Cascade( vec, vecLen,
111 originalIncident, currentParticle, targetParticle,
112 incidentHasChanged, targetHasChanged, quasiElastic );
113
114 CalculateMomenta( vec, vecLen,
115 originalIncident, originalTarget, modifiedOriginal,
116 targetNucleus, currentParticle, targetParticle,
117 incidentHasChanged, targetHasChanged, quasiElastic );
118
119 SetUpChange( vec, vecLen,
120 currentParticle, targetParticle,
121 incidentHasChanged );
122
123 delete originalTarget;
124 return &theParticleChange;
125}
126
127
128void G4RPGKMinusInelastic::Cascade(
130 G4int& vecLen,
131 const G4HadProjectile *originalIncident,
132 G4ReactionProduct &currentParticle,
133 G4ReactionProduct &targetParticle,
134 G4bool &incidentHasChanged,
135 G4bool &targetHasChanged,
136 G4bool &quasiElastic )
137{
138 // Derived from H. Fesefeldt's original FORTRAN code CASKM
139 //
140 // K- undergoes interaction with nucleon within a nucleus. Check if it is
141 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
142 // occurs and input particle is degraded in energy. No other particles are produced.
143 // If reaction is possible, find the correct number of pions/protons/neutrons
144 // produced using an interpolation to multiplicity data. Replace some pions or
145 // protons/neutrons by kaons or strange baryons according to the average
146 // multiplicity per Inelastic reaction.
147 //
148 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass();
149 const G4double etOriginal = originalIncident->GetTotalEnergy();
150 const G4double pOriginal = originalIncident->GetTotalMomentum();
151 const G4double targetMass = targetParticle.GetMass();
152 G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
153 targetMass*targetMass +
154 2.0*targetMass*etOriginal );
155 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
156
157 static G4bool first = true;
158 const G4int numMul = 1200;
159 const G4int numSec = 60;
160 static G4double protmul[numMul], protnorm[numSec]; // proton constants
161 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
162 // np = number of pi+, nneg = number of pi-, nz = number of pi0
163 G4int nt(0), np(0), nneg(0), nz(0);
164 const G4double c = 1.25;
165 const G4double b[] = { 0.70, 0.70 };
166 if( first ) // compute normalization constants, this will only be Done once
167 {
168 first = false;
169 G4int i;
170 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
171 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
172 G4int counter = -1;
173 for( np=0; np<(numSec/3); ++np )
174 {
175 for( nneg=std::max(0,np-1); nneg<=(np+1); ++nneg )
176 {
177 for( nz=0; nz<numSec/3; ++nz )
178 {
179 if( ++counter < numMul )
180 {
181 nt = np+nneg+nz;
182 if( (nt>0) && (nt<=numSec) )
183 {
184 protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
185 protnorm[nt-1] += protmul[counter];
186 }
187 }
188 }
189 }
190 }
191 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
192 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
193 counter = -1;
194 for( np=0; np<numSec/3; ++np )
195 {
196 for( nneg=np; nneg<=(np+2); ++nneg )
197 {
198 for( nz=0; nz<numSec/3; ++nz )
199 {
200 if( ++counter < numMul )
201 {
202 nt = np+nneg+nz;
203 if( (nt>0) && (nt<=numSec) )
204 {
205 neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
206 neutnorm[nt-1] += neutmul[counter];
207 }
208 }
209 }
210 }
211 }
212 for( i=0; i<numSec; ++i )
213 {
214 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
215 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
216 }
217 } // end of initialization
218
219 const G4double expxu = 82.; // upper bound for arg. of exp
220 const G4double expxl = -expxu; // lower bound for arg. of exp
233 const G4double cech[] = {1.,1.,1.,0.70,0.60,0.55,0.35,0.25,0.18,0.15};
234 G4int iplab = G4int(std::min( 9.0, pOriginal/GeV*5.0 ));
235 if( (pOriginal <= 2.0*GeV) && (G4UniformRand() < cech[iplab]) )
236 {
237 np = nneg = nz = nt = 0;
238 iplab = G4int(std::min( 19.0, pOriginal/GeV*10.0 ));
239 const G4double cnk0[] = {0.17,0.18,0.17,0.24,0.26,0.20,0.22,0.21,0.34,0.45,
240 0.58,0.55,0.36,0.29,0.29,0.32,0.32,0.33,0.33,0.33};
241 if( G4UniformRand() <= cnk0[iplab] )
242 {
243 quasiElastic = true;
244 if( targetParticle.GetDefinition() == aProton )
245 {
246 currentParticle.SetDefinitionAndUpdateE( aKaonZL );
247 incidentHasChanged = true;
248 targetParticle.SetDefinitionAndUpdateE( aNeutron );
249 targetHasChanged = true;
250 }
251 }
252 else // random number > cnk0[iplab]
253 {
254 G4double ran = G4UniformRand();
255 if( ran < 0.25 ) // k- p --> pi- s+
256 {
257 if( targetParticle.GetDefinition() == aProton )
258 {
259 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
260 targetParticle.SetDefinitionAndUpdateE( aSigmaPlus );
261 incidentHasChanged = true;
262 targetHasChanged = true;
263 }
264 }
265 else if( ran < 0.50 ) // k- p --> pi0 s0 or k- n --> pi- s0
266 {
267 if( targetParticle.GetDefinition() == aNeutron )
268 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
269 else
270 currentParticle.SetDefinitionAndUpdateE( aPiZero );
271 targetParticle.SetDefinitionAndUpdateE( aSigmaZero );
272 incidentHasChanged = true;
273 targetHasChanged = true;
274 }
275 else if( ran < 0.75 ) // k- p --> pi+ s- or k- n --> pi0 s-
276 {
277 if( targetParticle.GetDefinition() == aNeutron )
278 currentParticle.SetDefinitionAndUpdateE( aPiZero );
279 else
280 currentParticle.SetDefinitionAndUpdateE( aPiPlus );
281 targetParticle.SetDefinitionAndUpdateE( aSigmaMinus );
282 incidentHasChanged = true;
283 targetHasChanged = true;
284 }
285 else // k- p --> pi0 L or k- n --> pi- L
286 {
287 if( targetParticle.GetDefinition() == aNeutron )
288 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
289 else
290 currentParticle.SetDefinitionAndUpdateE( aPiZero );
291 targetParticle.SetDefinitionAndUpdateE( aLambda );
292 incidentHasChanged = true;
293 targetHasChanged = true;
294 }
295 }
296 }
297 else // (pOriginal > 2.0*GeV) || (random number >= cech[iplab])
298 {
299 if( availableEnergy < aPiPlus->GetPDGMass() )
300 { // not energetically possible to produce pion(s)
301 quasiElastic = true;
302 return;
303 }
304 G4double n, anpn;
305 GetNormalizationConstant( availableEnergy, n, anpn );
306 G4double ran = G4UniformRand();
307 G4double dum, test, excs = 0.0;
308 if( targetParticle.GetDefinition() == aProton )
309 {
310 G4int counter = -1;
311 for( np=0; np<numSec/3 && ran>=excs; ++np )
312 {
313 for( nneg=std::max(0,np-1); nneg<=(np+1) && ran>=excs; ++nneg )
314 {
315 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
316 {
317 if( ++counter < numMul )
318 {
319 nt = np+nneg+nz;
320 if( nt > 0 )
321 {
322 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
323 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
324 if( std::fabs(dum) < 1.0 )
325 {
326 if( test >= 1.0e-10 )excs += dum*test;
327 }
328 else
329 excs += dum*test;
330 }
331 }
332 }
333 }
334 }
335 if( ran >= excs ) // 3 previous loops continued to the end
336 {
337 quasiElastic = true;
338 return;
339 }
340 np--; nneg--; nz--;
341 if( np == nneg )
342 {
343 if( G4UniformRand() >= 0.75 )
344 {
345 currentParticle.SetDefinitionAndUpdateE( aKaonZL );
346 targetParticle.SetDefinitionAndUpdateE( aNeutron );
347 incidentHasChanged = true;
348 targetHasChanged = true;
349 }
350 }
351 else if( np == nneg+1 )
352 {
353 targetParticle.SetDefinitionAndUpdateE( aNeutron );
354 targetHasChanged = true;
355 }
356 else
357 {
358 currentParticle.SetDefinitionAndUpdateE( aKaonZL );
359 incidentHasChanged = true;
360 }
361 }
362 else // target must be a neutron
363 {
364 G4int counter = -1;
365 for( np=0; np<numSec/3 && ran>=excs; ++np )
366 {
367 for( nneg=np; nneg<=(np+2) && ran>=excs; ++nneg )
368 {
369 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
370 {
371 if( ++counter < numMul )
372 {
373 nt = np+nneg+nz;
374 if( (nt>=1) && (nt<=numSec) )
375 {
376 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
377 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
378 if( std::fabs(dum) < 1.0 )
379 {
380 if( test >= 1.0e-10 )excs += dum*test;
381 }
382 else
383 excs += dum*test;
384 }
385 }
386 }
387 }
388 }
389 if( ran >= excs ) // 3 previous loops continued to the end
390 {
391 quasiElastic = true;
392 return;
393 }
394 np--; nneg--; nz--;
395 if( np == nneg-1 )
396 {
397 if( G4UniformRand() < 0.5 )
398 {
399 targetParticle.SetDefinitionAndUpdateE( aProton );
400 targetHasChanged = true;
401 }
402 else
403 {
404 currentParticle.SetDefinitionAndUpdateE( aKaonZL );
405 incidentHasChanged = true;
406 }
407 }
408 else if( np != nneg )
409 {
410 currentParticle.SetDefinitionAndUpdateE( aKaonZL );
411 incidentHasChanged = true;
412 }
413 }
414 if( G4UniformRand() >= 0.5 )
415 {
416 if( (currentParticle.GetDefinition() == aKaonMinus &&
417 targetParticle.GetDefinition() == aNeutron ) ||
418 (currentParticle.GetDefinition() == aKaonZL &&
419 targetParticle.GetDefinition() == aProton ) )
420 {
421 ran = G4UniformRand();
422 if( ran < 0.68 )
423 {
424 if( targetParticle.GetDefinition() == aProton )
425 {
426 currentParticle.SetDefinitionAndUpdateE( aPiPlus );
427 targetParticle.SetDefinitionAndUpdateE( aLambda );
428 incidentHasChanged = true;
429 targetHasChanged = true;
430 }
431 else
432 {
433 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
434 targetParticle.SetDefinitionAndUpdateE( aLambda );
435 incidentHasChanged = true;
436 targetHasChanged = true;
437 }
438 }
439 else if( ran < 0.84 )
440 {
441 if( targetParticle.GetDefinition() == aProton )
442 {
443 currentParticle.SetDefinitionAndUpdateE( aPiZero );
444 targetParticle.SetDefinitionAndUpdateE( aSigmaPlus );
445 incidentHasChanged = true;
446 targetHasChanged = true;
447 }
448 else
449 {
450 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
451 targetParticle.SetDefinitionAndUpdateE( aSigmaZero );
452 incidentHasChanged = true;
453 targetHasChanged = true;
454 }
455 }
456 else
457 {
458 if( targetParticle.GetDefinition() == aProton )
459 {
460 currentParticle.SetDefinitionAndUpdateE( aPiPlus );
461 targetParticle.SetDefinitionAndUpdateE( aSigmaZero );
462 incidentHasChanged = true;
463 targetHasChanged = true;
464 }
465 else
466 {
467 currentParticle.SetDefinitionAndUpdateE( aPiZero );
468 targetParticle.SetDefinitionAndUpdateE( aSigmaMinus );
469 incidentHasChanged = true;
470 targetHasChanged = true;
471 }
472 }
473 }
474 else // ( current != aKaonMinus || target != aNeutron ) &&
475 // ( current != aKaonZL || target != aProton )
476 {
477 ran = G4UniformRand();
478 if( ran < 0.67 )
479 {
480 currentParticle.SetDefinitionAndUpdateE( aPiZero );
481 targetParticle.SetDefinitionAndUpdateE( aLambda );
482 incidentHasChanged = true;
483 targetHasChanged = true;
484 }
485 else if( ran < 0.78 )
486 {
487 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
488 targetParticle.SetDefinitionAndUpdateE( aSigmaPlus );
489 incidentHasChanged = true;
490 targetHasChanged = true;
491 }
492 else if( ran < 0.89 )
493 {
494 currentParticle.SetDefinitionAndUpdateE( aPiZero );
495 targetParticle.SetDefinitionAndUpdateE( aSigmaZero );
496 incidentHasChanged = true;
497 targetHasChanged = true;
498 }
499 else
500 {
501 currentParticle.SetDefinitionAndUpdateE( aPiPlus );
502 targetParticle.SetDefinitionAndUpdateE( aSigmaMinus );
503 incidentHasChanged = true;
504 targetHasChanged = true;
505 }
506 }
507 }
508 }
509
510 if (currentParticle.GetDefinition() == aKaonZL) {
511 if (G4UniformRand() >= 0.5) {
512 currentParticle.SetDefinitionAndUpdateE(aKaonZS);
513 incidentHasChanged = true;
514 }
515 }
516
517 if (targetParticle.GetDefinition() == aKaonZL) {
518 if (G4UniformRand() >= 0.5) {
519 targetParticle.SetDefinitionAndUpdateE(aKaonZS);
520 targetHasChanged = true;
521 }
522 }
523
524 SetUpPions(np, nneg, nz, vec, vecLen);
525 return;
526}
527
528 /* end of file */
529
530
531
@ isAlive
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
double mag() const
Hep3Vector vect() const
G4ParticleDefinition * GetDefinition() const
void Initialize(G4int items)
Definition: G4FastVector.hh:63
void SetStatusChange(G4HadFinalStateStatus aS)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
G4double GetTotalMomentum() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:113
static G4KaonZeroLong * KaonZeroLong()
static G4KaonZeroShort * KaonZeroShort()
static G4Lambda * Lambda()
Definition: G4Lambda.cc:108
const G4String & GetName() const
Definition: G4Material.hh:177
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
const G4String & GetParticleName() const
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:98
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4PionZero * PionZero()
Definition: G4PionZero.cc:104
static G4Proton * Proton()
Definition: G4Proton.cc:93
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4ParticleDefinition * GetDefinition() const
G4double GetMass() const
static G4SigmaMinus * SigmaMinus()
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:108
static G4SigmaZero * SigmaZero()
Definition: G4SigmaZero.cc:99
const G4double pi