71 G4cout <<
" >>> G4NonEquilibriumEvaporator::collide" <<
G4endl;
77 G4cerr <<
" NonEquilibriumEvaporator -> target is not nuclei " <<
G4endl;
83 const G4int a_cut = 5;
84 const G4int z_cut = 3;
89 const G4int itry_max = 1000;
108 G4int QP = QPP + QNP;
109 G4int QH = QPH + QNH;
115 toTheExitonSystemRestFrame.
setBullet(dummy);
124 G4bool try_again = (NEX > 0);
127 std::pair<G4double, G4double> parms;
130 if (A >= a_cut && Z >= z_cut && EEXS > eexs_cut) {
134 toTheExitonSystemRestFrame.
setTarget(PEX);
138 G4cout <<
" A " << A <<
" Z " << Z <<
" mass " << nuc_mass
139 <<
" EEXS " << EEXS <<
G4endl;
148 if (QEX < std::sqrt(2.0 * EG)) {
150 G4cout <<
" QEX " << QEX <<
" < sqrt(2*EG) " << std::sqrt(2.*EG)
151 <<
" NEX " << NEX <<
G4endl;
155 const G4double& CPA1 = parms.second;
163 G4double EMP = EEXS - BP - VP * A / (A-1);
167 G4cout <<
" AK1 " << AK1 <<
" CPA1 " <<
" VP " << VP
168 <<
"\n bind(A,Z) " << DM1 <<
" dBind(N) " << BN
169 <<
" dBind(P) " << BP
170 <<
"\n EMN " << EMN <<
" EMP " << EMP <<
G4endl;
173 if (EMN > eexs_cut) {
177 G4double APH = 0.25 * (QP * QP + QH * QH + QP - 3 * QH);
178 G4double APH1 = APH + 0.5 * (QP + QH);
180 G4double MELE = MEL / ESP / (A*A*A);
183 G4cout <<
" APH " << APH <<
" APH1 " << APH1 <<
" ESP " << ESP
187 MELE *= std::sqrt(15.0 / ESP);
188 }
else if(ESP < 7.0) {
189 MELE *= std::sqrt(ESP / 7.0);
190 if (ESP < 2.0) MELE *= std::sqrt(ESP / 2.0);
197 G4cout <<
" MELE " << MELE <<
" F1 " << F1 <<
" F2 " << F2
200 if (F1 > 0.0 && F2 > 0.0) {
204 D[0] = M1 * F2 * F2 * std::pow(F, NEX-1) / (QEX+1);
209 D[1] = 0.0462 / parlev /
G4cbrt(A) * QP * EEXS / QEX;
212 D[2] = D[1] * std::pow(EMP / EEXS, NEX) * (1.0 + CPA1);
213 D[1] *= std::pow(EMN / EEXS, NEX) *
getAL(A);
215 if (QNP < 1) D[1] = 0.0;
216 if (QPP < 1) D[2] = 0.0;
218 try_again = NEX > 1 && (D[1] > width_cut * D[0] ||
219 D[2] > width_cut * D[0]);
229 for (
G4int i = 0; i < 3; i++) {
241 }
else try_again =
false;
242 }
else try_again =
false;
254 if (A < 3.0) try_again =
false;
262 if (QNP < 1) icase = 0;
272 if (QPP < 1) icase = 0;
278 if (Z-1 < 1) try_again =
false;
282 if (try_again && icase != 0) {
284 G4cout <<
" ptype " << ptype <<
" B " << B <<
" V " << V
290 if (E < 0.0) icase = 0;
298 while (itry1 < itry_max && icase > 0 && bad) {
302 while (EEXS_new < 0.0 && itry < itry_max) {
308 X = 1.0 - std::sqrt(R);
313 X = std::pow(0.5 * R, QEX2);
315 for (
G4int i = 0; i < 1000; i++) {
317 (1.0 + QEX2 * X * (1.0 - R / std::pow(X, NEX)) / (1.0 - X));
320 if (std::fabs(DX / X) < 0.01)
break;
325 EEXS_new = EB - EPART * A / (A-1);
328 if (itry == itry_max || EEXS_new < 0.0) {
334 G4cout <<
" particle " << ptype <<
" escape " <<
G4endl;
343 G4double pmod = std::sqrt(EPART * (2.0 * mass + EPART));
361 if (ptype == 2) QNP_new--;
364 G4cout <<
" nucleus px " << PEX.
px() <<
" py " << PEX.
py()
365 <<
" pz " << PEX.
pz() <<
" E " << PEX.
e() <<
G4endl
366 <<
" evaporate px " << mom.
px() <<
" py " << mom.
py()
367 <<
" pz " << mom.
pz() <<
" E " << mom.
e() <<
G4endl;
373 EEXS_new = ((PEX-mom).m() - mass_new)*GeV;
374 if (EEXS_new < 0.)
continue;
396 <<
" ppout px " << ppout.
px() <<
" py " << ppout.
py()
397 <<
" pz " << ppout.
pz() <<
" E " << ppout.
e() <<
G4endl;
403 if (itry1 == itry_max) icase = 0;
409 if (icase == 0 && try_again) {
414 G4double XNUN = 1.0 / (1.6 + ESP / EFN);
415 G4double XNUP = 1.0 / (1.6 + ESP / EFP);
420 G4double PP = (QPP * SNN1 + QNP * SPN1) * ZR;
421 G4double PN = (QPP * SPN2 + QNP * SNN2) * (AR - ZR);
439 if (ZR < 2) try_again =
false;
441 }
else try_again =
false;
444 }
else try_again =
false;
445 }
else try_again =
false;
446 }
else try_again =
false;
465G4double G4NonEquilibriumEvaporator::getMatrixElement(
G4int A)
const {
468 G4cout <<
" >>> G4NonEquilibriumEvaporator::getMatrixElement" <<
G4endl;
473 if (A > 150) me = 100.0;
474 else if (A > 20) me = 140.0;
482 G4cout <<
" >>> G4NonEquilibriumEvaporator::getEO" <<
G4endl;
494 G4cout <<
" >>> G4NonEquilibriumEvaporator::getParLev" <<
G4endl;
G4DLLIMPORT std::ostream G4cerr
G4DLLIMPORT std::ostream G4cout
void setVectM(const Hep3Vector &spatial, double mass)
virtual G4bool validateOutput(G4InuclParticle *bullet, G4InuclParticle *target, G4CollisionOutput &output)
G4int numberOfOutgoingParticles() const
void addOutgoingParticle(const G4InuclElementaryParticle &particle)
void addOutgoingNucleus(const G4InuclNuclei &nuclei)
const G4ExitonConfiguration & getExitonConfiguration() const
G4double getNucleiMass() const
G4double getExitationEnergy() const
G4LorentzVector getMomentum() const
void setMomentum(const G4LorentzVector &mom)
void setModel(Model model)
void toTheTargetRestFrame()
void setBullet(const G4InuclParticle *bullet)
G4LorentzVector backToTheLab(const G4LorentzVector &mom) const
void setTarget(const G4InuclParticle *target)
G4NonEquilibriumEvaporator()
void collide(G4InuclParticle *bullet, G4InuclParticle *target, G4CollisionOutput &output)
G4double bindingEnergy(G4int A, G4int Z)
void paraMakerTruncated(G4double Z, std::pair< G4double, G4double > &parms)
G4LorentzVector generateWithRandomAngles(G4double p, G4double mass=0.)
G4double csNN(G4double e)
G4double FermiEnergy(G4int A, G4int Z, G4int ntype)
G4double csPN(G4double e)
G4double G4cbrt(G4double x)