Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4INCLDeltaDecayChannel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Alain Boudard, CEA-Saclay, France
28// Joseph Cugnon, University of Liege, Belgium
29// Jean-Christophe David, CEA-Saclay, France
30// Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31// Sylvie Leray, CEA-Saclay, France
32// Davide Mancusi, CEA-Saclay, France
33//
34#define INCLXX_IN_GEANT4_MODE 1
35
36#include "globals.hh"
37
41#include "G4INCLRandom.hh"
42#include "G4INCLGlobals.hh"
43
44namespace G4INCL {
45
47 :theParticle(p), incidentDirection(dir)
48 { }
49
51
53 const G4double m = p->getMass();
54 const G4double g0 = 115.0;
55 G4double gg = g0;
56 if(m > 1500.0) gg = 200.0;
57 const G4double geff = p->getEnergy()/m;
59 const G4double psf = std::pow(qqq, 3)/(std::pow(qqq, 3) + 5832000.0); // phase space factor 5.832E6 = 180^3
60 const G4double tdel = -G4INCL::PhysicalConstants::hc/(gg*psf)*std::log(Random::shoot())*geff; // fm
61 if( m > 1400) return tdel * 1./(1. + std::pow((m-1400)/g0,2)); // reduction of Delta life time for high masses.
62 return tdel; // fm
63 }
64
65 void DeltaDecayChannel::sampleAngles(G4double *ctet_par, G4double *stet_par, G4double *phi_par) {
66 const G4double hel = theParticle->getHelicity();
67 unsigned long loopCounter = 0;
68 const unsigned long maxLoopCounter = 10000000;
69 do {
70 (*ctet_par) = -1.0 + 2.0*Random::shoot();
71 if(std::abs(*ctet_par) > 1.0) (*ctet_par) = Math::sign(*ctet_par);
72 ++loopCounter;
73 } while(loopCounter<maxLoopCounter && Random::shoot() > ((1.0 + 3.0 * hel * (*ctet_par) * (*ctet_par)) /(1.0 + 3.0 * hel))); /* Loop checking, 10.07.2015, D.Mancusi */
74 (*stet_par) = std::sqrt(1.-(*ctet_par)*(*ctet_par));
75 (*phi_par) = Math::twoPi * Random::shoot();
76 }
77
79 // SUBROUTINE DECAY2(P1,P2,P3,WP,ij,
80 // s X1,X2,hel,B1,B2,B3)
81
82 // This routine describes the anisotropic decay of a particle of mass
83 // xi into 2 particles of masses x1,x2.
84 // The anisotropy is supposed to follow a 1+3*hel*(cos(theta))**2
85 // law with respect to the direction of the incoming particle.
86 // In the input, p1,p2,p3 is the momentum of particle xi.
87 // In the output, p1,p2,p3 is the momentum of particle x1 , while
88 // q1,q2,q3 is the momentum of particle x2.
89
90 // COMMON/bl12/QQ1(200),QQ2(200),QQ3(200),QQ4(200),
91 // s YY1(200),YY2(200),YY3(200),YM(200),IPI(200)
92 // common/hazard/ial,IY1,IY2,IY3,IY4,IY5,IY6,IY7,IY8,IY9,IY10,
93 // s IY11,IY12,IY13,IY14,IY15,IY16,IY17,IY18,IY19
94
95 // DATA IY8,IY9,IY10/82345,92345,45681/
96 // PCM(E,A,C)=0.5*SQRT((E**2-(A+C)**2)*(E**2-(A-C)**2))/E P-N20800
97 // XI=YM(ij)
98
99 // XE=WP P-N20810
100 // B1=P1/XE P-N20820
101 // B2=P2/XE P-N20830
102 // B3=P3/XE
103 // XQ=PCM(XI,X1,X2)
104
105 const G4double deltaMass = theParticle->getMass();
106
107 G4double fi, ctet, stet;
108 sampleAngles(&ctet, &stet, &fi);
109
110 G4double cfi = std::cos(fi);
111 G4double sfi = std::sin(fi);
112 G4double beta = incidentDirection.mag();
113
114 G4double q1, q2, q3;
115 G4double sal=0.0;
116 if (beta >= 1.0e-10)
117 sal = incidentDirection.perp()/beta;
118 if (sal >= 1.0e-6) {
119 G4double b1 = incidentDirection.getX();
120 G4double b2 = incidentDirection.getY();
121 G4double b3 = incidentDirection.getZ();
122 G4double cal = b3/beta;
123 G4double t1 = ctet+cal*stet*sfi/sal;
124 G4double t2 = stet/sal;
125 q1=(b1*t1+b2*t2*cfi)/beta;
126 q2=(b2*t1-b1*t2*cfi)/beta;
127 q3=(b3*t1/beta-t2*sfi);
128 } else {
129 q1 = stet*cfi;
130 q2 = stet*sfi;
131 q3 = ctet;
132 }
133 theParticle->setHelicity(0.0);
134
135 ParticleType pionType;
136 switch(theParticle->getType()) {
137 case DeltaPlusPlus:
138 theParticle->setType(Proton);
139 pionType = PiPlus;
140 break;
141 case DeltaPlus:
142 if(Random::shoot() < 1.0/3.0) {
143 theParticle->setType(Neutron);
144 pionType = PiPlus;
145 } else {
146 theParticle->setType(Proton);
147 pionType = PiZero;
148 }
149 break;
150 case DeltaZero:
151 if(Random::shoot() < 1.0/3.0) {
152 theParticle->setType(Proton);
153 pionType = PiMinus;
154 } else {
155 theParticle->setType(Neutron);
156 pionType = PiZero;
157 }
158 break;
159 case DeltaMinus:
160 theParticle->setType(Neutron);
161 pionType = PiMinus;
162 break;
163 default:
164 INCL_FATAL("Unrecognized delta type; type=" << theParticle->getType() << '\n');
165 pionType = UnknownParticle;
166 break;
167 }
168
170 theParticle->getMass(),
172
173 q1 *= xq;
174 q2 *= xq;
175 q3 *= xq;
176
177 ThreeVector pionMomentum(q1, q2, q3);
178 ThreeVector pionPosition(theParticle->getPosition());
179 Particle *pion = new Particle(pionType, pionMomentum, pionPosition);
180 theParticle->setMomentum(-pionMomentum);
181 theParticle->adjustEnergyFromMomentum();
182
183 fs->addModifiedParticle(theParticle);
184 fs->addCreatedParticle(pion);
185 // call loren(q1,q2,q3,b1,b2,b3,wq)
186 // call loren(p1,p2,p3,b1,b2,b3,wp)
187 // qq1(ij)=q1
188 // qq2(ij)=q2
189 // qq3(ij)=q3
190 // qq4(ij)=wq
191 // ym(ij)=xi
192 // RETURN P-N21120
193 // END P-N21130
194 }
195}
#define INCL_FATAL(x)
double G4double
Definition: G4Types.hh:83
static G4double computeDecayTime(Particle *p)
DeltaDecayChannel(Particle *, ThreeVector const &)
void fillFinalState(FinalState *fs)
void addModifiedParticle(Particle *p)
void addCreatedParticle(Particle *p)
G4double getEnergy() const
G4double getHelicity()
void setHelicity(G4double h)
const G4INCL::ThreeVector & getPosition() const
G4double adjustEnergyFromMomentum()
Recompute the energy to match the momentum.
virtual void setMomentum(const G4INCL::ThreeVector &momentum)
G4INCL::ParticleType getType() const
void setType(ParticleType t)
G4double getMass() const
Get the cached particle mass.
G4double getY() const
G4double getZ() const
G4double mag() const
G4double perp() const
G4double getX() const
G4double momentumInCM(Particle const *const p1, Particle const *const p2)
gives the momentum in the CM frame of two particles.
const G4double twoPi
G4int sign(const T t)
G4double getINCLMass(const G4int A, const G4int Z, const G4int S)
Get INCL nuclear mass (in MeV/c^2)
const G4double effectiveNucleonMass
const G4double effectivePionMass
const G4double hc
[MeV*fm]
G4double shoot()
Definition: G4INCLRandom.cc:93