Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4NeutronHPFissionFS.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// neutron_hp -- source file
27// J.P. Wellisch, Nov-1996
28// A prototype of the low energy neutron transport model.
29//
30// 12-Apr-06 fix in delayed neutron and photon emission without FS data by T. Koi
31// 07-Sep-11 M. Kelsey -- Follow change to G4HadFinalState interface
32
35#include "G4Nucleus.hh"
38#include "G4ParticleTable.hh"
39
41 {
42 //G4cout << "G4NeutronHPFissionFS::Init " << A << " " << Z << " " << M << G4endl;
43 theFS.Init(A, Z, M, dirName, aFSType);
44 theFC.Init(A, Z, M, dirName, aFSType);
45 theSC.Init(A, Z, M, dirName, aFSType);
46 theTC.Init(A, Z, M, dirName, aFSType);
47 theLC.Init(A, Z, M, dirName, aFSType);
48
49 theFF.Init(A, Z, M, dirName, aFSType);
50 if ( getenv("G4NEUTRONHP_PRODUCE_FISSION_FRAGMENTS") && theFF.HasFSData() )
51 {
52 G4cout << "Activate Fission Fragments Prodcution for the target isotope of "
53 << "Z = " << (G4int)Z
54 << ", A = " << (G4int)A
55 //<< "M = " << M
56 << G4endl;
57 G4cout << "As the result, delayed neutrons are omitted and they should be taken care by RadioaActiveDecay."
58 << G4endl;
59 produceFissionFragments = true;
60 }
61 }
63 {
64 //G4cout << "G4NeutronHPFissionFS::ApplyYourself " << G4endl;
65// prepare neutron
67 G4double eKinetic = theTrack.GetKineticEnergy();
68 const G4HadProjectile *incidentParticle = &theTrack;
69 G4ReactionProduct theNeutron( const_cast<G4ParticleDefinition *>(incidentParticle->GetDefinition()) );
70 theNeutron.SetMomentum( incidentParticle->Get4Momentum().vect() );
71 theNeutron.SetKineticEnergy( eKinetic );
72
73// prepare target
74 G4Nucleus aNucleus;
75 G4ReactionProduct theTarget;
76 G4double targetMass = theFS.GetMass();
77 G4ThreeVector neuVelo = (1./incidentParticle->GetDefinition()->GetPDGMass())*theNeutron.GetMomentum();
78 theTarget = aNucleus.GetBiasedThermalNucleus( targetMass, neuVelo, theTrack.GetMaterial()->GetTemperature());
79
80// set neutron and target in the FS classes
81 theFS.SetNeutron(theNeutron);
82 theFS.SetTarget(theTarget);
83 theFC.SetNeutron(theNeutron);
84 theFC.SetTarget(theTarget);
85 theSC.SetNeutron(theNeutron);
86 theSC.SetTarget(theTarget);
87 theTC.SetNeutron(theNeutron);
88 theTC.SetTarget(theTarget);
89 theLC.SetNeutron(theNeutron);
90 theLC.SetTarget(theTarget);
91
92
93 theFF.SetNeutron(theNeutron);
94 theFF.SetTarget(theTarget);
95
96//TKWORK 120531
97//G4cout << theTarget.GetDefinition() << G4endl; this should be NULL
98//G4cout << "Z = " << theBaseZ << ", A = " << theBaseA << ", M = " << theBaseM << G4endl;
99// theNDLDataZ,A,M should be filled in each FS (theFS, theFC, theSC, theTC, theLC and theFF)
100////G4cout << "Z = " << theNDLDataZ << ", A = " << theNDLDataA << ", M = " << theNDLDataM << G4endl;
101
102// boost to target rest system and decide on channel.
103 theNeutron.Lorentz(theNeutron, -1*theTarget);
104
105// dice the photons
106
107 G4DynamicParticleVector * thePhotons;
108 thePhotons = theFS.GetPhotons();
109
110// select the FS in charge
111
112 eKinetic = theNeutron.GetKineticEnergy();
113 G4double xSec[4];
114 xSec[0] = theFC.GetXsec(eKinetic);
115 xSec[1] = xSec[0]+theSC.GetXsec(eKinetic);
116 xSec[2] = xSec[1]+theTC.GetXsec(eKinetic);
117 xSec[3] = xSec[2]+theLC.GetXsec(eKinetic);
118 G4int it;
119 unsigned int i=0;
120 G4double random = G4UniformRand();
121 if(xSec[3]==0)
122 {
123 it=-1;
124 }
125 else
126 {
127 for(i=0; i<4; i++)
128 {
129 it =i;
130 if(random<xSec[i]/xSec[3]) break;
131 }
132 }
133
134// dice neutron multiplicities, energies and momenta in Lab. @@
135// no energy conservation on an event-to-event basis. we rely on the data to be ok. @@
136// also for mean, we rely on the consistancy of the data. @@
137
138 G4int Prompt=0, delayed=0, all=0;
139 G4DynamicParticleVector * theNeutrons = 0;
140 switch(it) // check logic, and ask, if partials can be assumed to correspond to individual particles @@@
141 {
142 case 0:
143 theFS.SampleNeutronMult(all, Prompt, delayed, eKinetic, 0);
144 if(Prompt==0&&delayed==0) Prompt=all;
145 theNeutrons = theFC.ApplyYourself(Prompt); // delayed always in FS
146 // take 'U' into account explicitely (see 5.4) in the sampling of energy @@@@
147 break;
148 case 1:
149 theFS.SampleNeutronMult(all, Prompt, delayed, eKinetic, 1);
150 if(Prompt==0&&delayed==0) Prompt=all;
151 theNeutrons = theSC.ApplyYourself(Prompt); // delayed always in FS, off done in FSFissionFS
152 break;
153 case 2:
154 theFS.SampleNeutronMult(all, Prompt, delayed, eKinetic, 2);
155 if(Prompt==0&&delayed==0) Prompt=all;
156 theNeutrons = theTC.ApplyYourself(Prompt); // delayed always in FS
157 break;
158 case 3:
159 theFS.SampleNeutronMult(all, Prompt, delayed, eKinetic, 3);
160 if(Prompt==0&&delayed==0) Prompt=all;
161 theNeutrons = theLC.ApplyYourself(Prompt); // delayed always in FS
162 break;
163 default:
164 break;
165 }
166
167// dice delayed neutrons and photons, and fallback
168// for Prompt in case channel had no FS data; add all paricles to FS.
169
170 //TKWORK120531
171 if ( produceFissionFragments ) delayed=0;
172
173 G4double * theDecayConstants;
174
175 if( theNeutrons != 0)
176 {
177 theDecayConstants = new G4double[delayed];
178 //
179 //110527TKDB Unused codes, Detected by gcc4.6 compiler
180 //G4int nPhotons = 0;
181 //if(thePhotons!=0) nPhotons = thePhotons->size();
182 for(i=0; i<theNeutrons->size(); i++)
183 {
184 theResult.AddSecondary(theNeutrons->operator[](i));
185 }
186 delete theNeutrons;
187
188 G4DynamicParticleVector * theDelayed = 0;
189// G4cout << "delayed" << G4endl;
190 theDelayed = theFS.ApplyYourself(0, delayed, theDecayConstants);
191 for(i=0; i<theDelayed->size(); i++)
192 {
193 G4double time = -std::log(G4UniformRand())/theDecayConstants[i];
194 time += theTrack.GetGlobalTime();
195 theResult.AddSecondary(theDelayed->operator[](i));
197 }
198 delete theDelayed;
199 }
200 else
201 {
202// cout << " all = "<<all<<G4endl;
203 theFS.SampleNeutronMult(all, Prompt, delayed, eKinetic, 0);
204 theDecayConstants = new G4double[delayed];
205 if(Prompt==0&&delayed==0) Prompt=all;
206 theNeutrons = theFS.ApplyYourself(Prompt, delayed, theDecayConstants);
207 //110527TKDB Unused codes, Detected by gcc4.6 compiler
208 //G4int nPhotons = 0;
209 //if(thePhotons!=0) nPhotons = thePhotons->size();
210 G4int i0;
211 for(i0=0; i0<Prompt; i0++)
212 {
213 theResult.AddSecondary(theNeutrons->operator[](i0));
214 }
215
216//G4cout << "delayed" << G4endl;
217 for(i0=Prompt; i0<Prompt+delayed; i0++)
218 {
219 G4double time = -std::log(G4UniformRand())/theDecayConstants[i0-Prompt];
220 time += theTrack.GetGlobalTime();
221 theResult.AddSecondary(theNeutrons->operator[](i0));
223 }
224 delete theNeutrons;
225 }
226 delete [] theDecayConstants;
227// cout << "all delayed "<<delayed<<G4endl;
228 unsigned int nPhotons = 0;
229 if(thePhotons!=0)
230 {
231 nPhotons = thePhotons->size();
232 for(i=0; i<nPhotons; i++)
233 {
234 theResult.AddSecondary(thePhotons->operator[](i));
235 }
236 delete thePhotons;
237 }
238
239// finally deal with local energy depositions.
240// G4cout <<"Number of secondaries = "<<theResult.GetNumberOfSecondaries()<< G4endl;
241// G4cout <<"Number of photons = "<<nPhotons<<G4endl;
242// G4cout <<"Number of Prompt = "<<Prompt<<G4endl;
243// G4cout <<"Number of delayed = "<<delayed<<G4endl;
244
245 G4NeutronHPFissionERelease * theERelease = theFS.GetEnergyRelease();
246 G4double eDepByFragments = theERelease->GetFragmentKinetic();
247 //theResult.SetLocalEnergyDeposit(eDepByFragments);
248 if ( !produceFissionFragments ) theResult.SetLocalEnergyDeposit(eDepByFragments);
249// cout << "local energy deposit" << eDepByFragments<<G4endl;
250// clean up the primary neutron
252 //G4cout << "Prompt = " << Prompt << ", Delayed = " << delayed << ", All= " << all << G4endl;
253 //G4cout << "local energy deposit " << eDepByFragments/MeV << "MeV " << G4endl;
254
255 //TKWORK120531
256 if ( produceFissionFragments )
257 {
258 G4int fragA_Z=0;
259 G4int fragA_A=0;
260 G4int fragA_M=0;
261 // System is traget rest!
262 theFF.GetAFissionFragment(eKinetic,fragA_Z,fragA_A,fragA_M);
263 G4int fragB_Z=(G4int)theBaseZ-fragA_Z;
264 G4int fragB_A=(G4int)theBaseA-fragA_A-Prompt;
265 //fragA_M ignored
266 //G4int fragB_M=theBaseM-fragA_M;
267 //G4cout << fragA_Z << " " << fragA_A << " " << fragA_M << G4endl;
268 //G4cout << fragB_Z << " " << fragB_A << G4endl;
269
271 //Excitation energy is not taken into account
272 G4ParticleDefinition* pdA = pt->GetIon( fragA_Z , fragA_A , 0.0 );
273 G4ParticleDefinition* pdB = pt->GetIon( fragB_Z , fragB_A , 0.0 );
274
275 //Isotropic Distribution
276 G4double phi = twopi*G4UniformRand();
277 G4double theta = pi*G4UniformRand();
278 G4double sinth = std::sin(theta);
279 G4ThreeVector direction (sinth*std::cos(phi) , sinth*std::sin(phi), std::cos(theta) );
280
281 // Just use ENDF value for this
282 G4double ER = eDepByFragments;
283 G4double ma = pdA->GetPDGMass();
284 G4double mb = pdB->GetPDGMass();
285 G4double EA = ER / ( 1 + ma/mb);
286 G4double EB = ER - EA;
287 G4DynamicParticle* dpA = new G4DynamicParticle( pdA , direction , EA);
288 G4DynamicParticle* dpB = new G4DynamicParticle( pdB , -direction , EB);
291 }
292 //TKWORK 120531 END
293
294 return &theResult;
295 }
std::vector< G4DynamicParticle * > G4DynamicParticleVector
@ stopAndKill
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector vect() const
void SetStatusChange(G4HadFinalStateStatus aS)
G4int GetNumberOfSecondaries() const
void AddSecondary(G4DynamicParticle *aP)
G4HadSecondary * GetSecondary(size_t i)
void SetLocalEnergyDeposit(G4double aE)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetGlobalTime() const
void SetTime(G4double aT)
G4double GetTemperature() const
Definition: G4Material.hh:181
G4DynamicParticleVector * ApplyYourself(G4int nNeutrons)
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType)
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType)
void GetAFissionFragment(G4double, G4int &, G4int &, G4int &)
G4NeutronHPFissionERelease * GetEnergyRelease()
void SetTarget(const G4ReactionProduct &aTarget)
void SetNeutron(const G4ReactionProduct &aNeutron)
void SampleNeutronMult(G4int &all, G4int &Prompt, G4int &delayed, G4double energy, G4int off)
G4DynamicParticleVector * ApplyYourself(G4int Prompt, G4int delayed, G4double *decayconst)
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType)
G4DynamicParticleVector * GetPhotons()
virtual G4double GetXsec(G4double anEnergy)
void SetNeutron(const G4ReactionProduct &aNeutron)
void SetTarget(const G4ReactionProduct &aTarget)
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType)
G4HadFinalState * ApplyYourself(const G4HadProjectile &theTrack)
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType)
G4DynamicParticleVector * ApplyYourself(G4int NNeutrons)
G4DynamicParticleVector * ApplyYourself(G4int NNeutrons)
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType)
G4DynamicParticleVector * ApplyYourself(G4int NNeutrons)
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType)
G4ReactionProduct GetBiasedThermalNucleus(G4double aMass, G4ThreeVector aVelocity, G4double temp=-1) const
Definition: G4Nucleus.cc:108
static G4ParticleTable * GetParticleTable()
G4ParticleDefinition * GetIon(G4int atomicNumber, G4int atomicMass, G4double excitationEnergy)
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void Lorentz(const G4ReactionProduct &p1, const G4ReactionProduct &p2)
void SetKineticEnergy(const G4double en)