Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4INCLStandardPropagationModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Alain Boudard, CEA-Saclay, France
28// Joseph Cugnon, University of Liege, Belgium
29// Jean-Christophe David, CEA-Saclay, France
30// Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31// Sylvie Leray, CEA-Saclay, France
32// Davide Mancusi, CEA-Saclay, France
33//
34#define INCLXX_IN_GEANT4_MODE 1
35
36#include "globals.hh"
37
38/*
39 * StandardPropagationModel.cpp
40 *
41 * \date 4 juin 2009
42 * \author Pekka Kaitaniemi
43 */
44
48#include "G4INCLDecayAvatar.hh"
50#include "G4INCLRandom.hh"
51#include <iostream>
52#include <algorithm>
53#include "G4INCLLogger.hh"
54#include "G4INCLGlobals.hh"
61#include "G4INCLIntersection.hh"
62
63namespace G4INCL {
64
66 :theNucleus(0), maximumTime(70.0), currentTime(0.0),
67 hadronizationTime(hTime),
68 firstAvatar(true),
69 theLocalEnergyType(localEnergyType),
70 theLocalEnergyDeltaType(localEnergyDeltaType)
71 {
72 }
73
75 {
76 delete theNucleus;
77 }
78
80 {
81 return theNucleus;
82 }
83
84 G4double StandardPropagationModel::shoot(ParticleSpecies const &projectileSpecies, const G4double kineticEnergy, const G4double impactParameter, const G4double phi) {
85 if(projectileSpecies.theType==Composite)
86 return shootComposite(projectileSpecies, kineticEnergy, impactParameter, phi);
87 else
88 return shootParticle(projectileSpecies.theType, kineticEnergy, impactParameter, phi);
89 }
90
91 G4double StandardPropagationModel::shootParticle(ParticleType const type, const G4double kineticEnergy, const G4double impactParameter, const G4double phi) {
92 theNucleus->setParticleNucleusCollision();
93 currentTime = 0.0;
94
95 // Create the projectile particle
96 const G4double projectileMass = ParticleTable::getTableParticleMass(type);
97 G4double energy = kineticEnergy + projectileMass;
98 G4double momentumZ = std::sqrt(energy*energy - projectileMass*projectileMass);
99 ThreeVector momentum(0.0, 0.0, momentumZ);
100 Particle *p= new G4INCL::Particle(type, energy, momentum, ThreeVector());
101
102 G4double temfin;
103 G4double TLab;
104 if( p->isMeson()) {
105 temfin = 30.18 * std::pow(theNucleus->getA(), 0.17);
106 TLab = p->getKineticEnergy();
107 } else {
108 temfin = 29.8 * std::pow(theNucleus->getA(), 0.16);
109 TLab = p->getKineticEnergy()/p->getA();
110 }
111
112 // energy-dependent stopping time above 2 AGeV
113 if(TLab>2000.)
114 temfin *= (5.8E4-TLab)/5.6E4;
115
116 maximumTime = temfin;
117
118 // If the incoming particle is slow, use a larger stopping time
119 const G4double rMax = theNucleus->getUniverseRadius();
120 const G4double distance = 2.*rMax;
121 const G4double projectileVelocity = p->boostVector().mag();
122 const G4double traversalTime = distance / projectileVelocity;
123 if(maximumTime < traversalTime)
124 maximumTime = traversalTime;
125 INCL_DEBUG("Cascade stopping time is " << maximumTime << '\n');
126
127 // If Coulomb is activated, do not process events with impact
128 // parameter larger than the maximum impact parameter, taking into
129 // account Coulomb distortion.
130 if(impactParameter>CoulombDistortion::maxImpactParameter(p->getSpecies(), kineticEnergy, theNucleus)) {
131 INCL_DEBUG("impactParameter>CoulombDistortion::maxImpactParameter" << '\n');
132 delete p;
133 return -1.;
134 }
135
136 ThreeVector position(impactParameter * std::cos(phi),
137 impactParameter * std::sin(phi),
138 0.);
140
141 // Fill in the relevant kinematic variables
143 theNucleus->setIncomingMomentum(p->getMomentum());
144 theNucleus->setInitialEnergy(p->getEnergy()
145 + ParticleTable::getTableMass(theNucleus->getA(),theNucleus->getZ(),theNucleus->getS()));
146
147 // Reset the particle kinematics to the INCL values
148 p->setINCLMass();
149 p->setEnergy(p->getMass() + kineticEnergy);
151
154 firstAvatar = false;
155
156 // Get the entry avatars from Coulomb and put them in the Store
157 ParticleEntryAvatar *theEntryAvatar = CoulombDistortion::bringToSurface(p, theNucleus);
158 if(theEntryAvatar) {
159 theNucleus->getStore()->addParticleEntryAvatar(theEntryAvatar);
160
161 return p->getTransversePosition().mag();
162 } else {
163 delete p;
164 return -1.;
165 }
166 }
167
168 G4double StandardPropagationModel::shootComposite(ParticleSpecies const &species, const G4double kineticEnergy, const G4double impactParameter, const G4double phi) {
169 theNucleus->setNucleusNucleusCollision();
170 currentTime = 0.0;
171
172 // Create the ProjectileRemnant object
173 ProjectileRemnant *pr = new ProjectileRemnant(species, kineticEnergy);
174
175 // Same stopping time as for nucleon-nucleus
176 maximumTime = 29.8 * std::pow(theNucleus->getA(), 0.16);
177
178 // If the incoming cluster is slow, use a larger stopping time
180 const G4double rMax = theNucleus->getUniverseRadius();
181 const G4double distance = 2.*rMax + 2.725*rms;
182 const G4double projectileVelocity = pr->boostVector().mag();
183 const G4double traversalTime = distance / projectileVelocity;
184 if(maximumTime < traversalTime)
185 maximumTime = traversalTime;
186 INCL_DEBUG("Cascade stopping time is " << maximumTime << '\n');
187
188 // If Coulomb is activated, do not process events with impact
189 // parameter larger than the maximum impact parameter, taking into
190 // account Coulomb distortion.
191 if(impactParameter>CoulombDistortion::maxImpactParameter(pr,theNucleus)) {
192 INCL_DEBUG("impactParameter>CoulombDistortion::maxImpactParameter" << '\n');
193 delete pr;
194 return -1.;
195 }
196
197 // Position the cluster at the right impact parameter
198 ThreeVector position(impactParameter * std::cos(phi),
199 impactParameter * std::sin(phi),
200 0.);
202
203 // Fill in the relevant kinematic variables
205 theNucleus->setIncomingMomentum(pr->getMomentum());
206 theNucleus->setInitialEnergy(pr->getEnergy()
207 + ParticleTable::getTableMass(theNucleus->getA(),theNucleus->getZ(),theNucleus->getS()));
208
210 firstAvatar = false;
211
212 // Get the entry avatars from Coulomb
213 IAvatarList theAvatarList
214 = CoulombDistortion::bringToSurface(pr, theNucleus);
215
216 if(theAvatarList.empty()) {
217 INCL_DEBUG("No ParticleEntryAvatar found, transparent event" << '\n');
218 delete pr;
219 return -1.;
220 }
221
222 /* Store the internal kinematics of the projectile remnant.
223 *
224 * Note that this is at variance with the Fortran version, which stores
225 * the initial kinematics of the particles *after* putting the spectators
226 * on mass shell, but *before* removing the same energy from the
227 * participants. Due to the different code flow, doing so in the C++
228 * version leads to wrong excitation energies for the forced compound
229 * nucleus.
230 */
231 pr->storeComponents();
232
233 // Tell the Nucleus about the ProjectileRemnant
234 theNucleus->setProjectileRemnant(pr);
235
236 // Register the ParticleEntryAvatars
237 theNucleus->getStore()->addParticleEntryAvatars(theAvatarList);
238
239 return pr->getTransversePosition().mag();
240 }
241
243 return maximumTime;
244 }
245
247// assert(time>0.0);
248 maximumTime = time;
249 }
250
252 return currentTime;
253 }
254
256 {
257 theNucleus = nucleus;
258 }
259
261 {
262 if(anAvatar) theNucleus->getStore()->add(anAvatar);
263 }
264
266 // Is either particle a participant?
267 if(!p1->isParticipant() && !p2->isParticipant() && p1->getParticipantType()==p2->getParticipantType()) return NULL;
268
269 // Is it a pi-resonance collision (we don't treat them)?
270 if((p1->isResonance() && p2->isPion()) || (p1->isPion() && p2->isResonance()))
271 return NULL;
272
273 // Will the avatar take place between now and the end of the cascade?
274 G4double minDistOfApproachSquared = 0.0;
275 G4double t = getTime(p1, p2, &minDistOfApproachSquared);
276 if(t>maximumTime || t<currentTime+hadronizationTime) return NULL;
277
278 // Local energy. Jump through some hoops to calculate the cross section
279 // at the collision point, and clean up after yourself afterwards.
280 G4bool hasLocalEnergy;
281 if(p1->isPion() || p2->isPion())
282 hasLocalEnergy = ((theLocalEnergyDeltaType == FirstCollisionLocalEnergy &&
283 theNucleus->getStore()->getBook().getAcceptedCollisions()==0) ||
284 theLocalEnergyDeltaType == AlwaysLocalEnergy);
285 else
286 hasLocalEnergy = ((theLocalEnergyType == FirstCollisionLocalEnergy &&
287 theNucleus->getStore()->getBook().getAcceptedCollisions()==0) ||
288 theLocalEnergyType == AlwaysLocalEnergy);
289 const G4bool p1HasLocalEnergy = (hasLocalEnergy && !p1->isMeson());
290 const G4bool p2HasLocalEnergy = (hasLocalEnergy && !p2->isMeson());
291
292 if(p1HasLocalEnergy) {
293 backupParticle1 = *p1;
294 p1->propagate(t - currentTime);
295 if(p1->getPosition().mag() > theNucleus->getSurfaceRadius(p1)) {
296 *p1 = backupParticle1;
297 return NULL;
298 }
300 }
301 if(p2HasLocalEnergy) {
302 backupParticle2 = *p2;
303 p2->propagate(t - currentTime);
304 if(p2->getPosition().mag() > theNucleus->getSurfaceRadius(p2)) {
305 *p2 = backupParticle2;
306 if(p1HasLocalEnergy) {
307 *p1 = backupParticle1;
308 }
309 return NULL;
310 }
312 }
313
314 // Compute the total cross section
315 const G4double totalCrossSection = CrossSections::total(p1, p2);
316 const G4double squareTotalEnergyInCM = KinematicsUtils::squareTotalEnergyInCM(p1,p2);
317
318 // Restore particles to their state before the local-energy tweak
319 if(p1HasLocalEnergy) {
320 *p1 = backupParticle1;
321 }
322 if(p2HasLocalEnergy) {
323 *p2 = backupParticle2;
324 }
325
326 // Is the CM energy > cutNN? (no cutNN on the first collision)
327 if(theNucleus->getStore()->getBook().getAcceptedCollisions()>0
328 && p1->isNucleon() && p2->isNucleon()
329 && squareTotalEnergyInCM < BinaryCollisionAvatar::getCutNNSquared()) return NULL;
330
331 // Do the particles come close enough to each other?
332 if(Math::tenPi*minDistOfApproachSquared > totalCrossSection) return NULL;
333
334 // Bomb out if the two collision partners are the same particle
335// assert(p1->getID() != p2->getID());
336
337 // Return a new avatar, then!
338 return new G4INCL::BinaryCollisionAvatar(t, totalCrossSection, theNucleus, p1, p2);
339 }
340
342 Intersection theIntersection(
344 aParticle->getPosition(),
345 aParticle->getPropagationVelocity(),
346 theNucleus->getSurfaceRadius(aParticle)));
347 G4double time;
348 if(theIntersection.exists) {
349 time = currentTime + theIntersection.time;
350 } else {
351 INCL_ERROR("Imaginary reflection time for particle: " << '\n'
352 << aParticle->print());
353 time = 10000.0;
354 }
355 return time;
356 }
357
359 G4INCL::Particle const * const particleB, G4double *minDistOfApproach) const
360 {
361 G4double time;
363 t13 -= particleB->getPropagationVelocity();
364 G4INCL::ThreeVector distance = particleA->getPosition();
365 distance -= particleB->getPosition();
366 const G4double t7 = t13.dot(distance);
367 const G4double dt = t13.mag2();
368 if(dt <= 1.0e-10) {
369 (*minDistOfApproach) = 100000.0;
370 return currentTime + 100000.0;
371 } else {
372 time = -t7/dt;
373 }
374 (*minDistOfApproach) = distance.mag2() + time * t7;
375 return currentTime + time;
376 }
377
378 void StandardPropagationModel::generateUpdatedCollisions(const ParticleList &updatedParticles, const ParticleList &particles) {
379
380 // Loop over all the updated particles
381 for(ParticleIter updated=updatedParticles.begin(), e=updatedParticles.end(); updated!=e; ++updated)
382 {
383 // Loop over all the particles
384 for(ParticleIter particle=particles.begin(), end=particles.end(); particle!=end; ++particle)
385 {
386 /* Consider the generation of a collision avatar only if (*particle)
387 * is not one of the updated particles.
388 * The criterion makes sure that you don't generate avatars between
389 * updated particles. */
390 if(updatedParticles.contains(*particle)) continue;
391
393 }
394 }
395 }
396
398 // Loop over all the particles
399 for(ParticleIter p1=particles.begin(), e=particles.end(); p1!=e; ++p1) {
400 // Loop over the rest of the particles
401 for(ParticleIter p2 = p1 + 1; p2 != particles.end(); ++p2) {
403 }
404 }
405 }
406
408
409 const G4bool haveExcept = !except.empty();
410
411 // Loop over all the particles
412 for(ParticleIter p1=particles.begin(), e=particles.end(); p1!=e; ++p1)
413 {
414 // Loop over the rest of the particles
415 ParticleIter p2 = p1;
416 for(++p2; p2 != particles.end(); ++p2)
417 {
418 // Skip the collision if both particles must be excluded
419 if(haveExcept && except.contains(*p1) && except.contains(*p2)) continue;
420
422 }
423 }
424
425 }
426
428
429 for(ParticleIter iter=particles.begin(), e=particles.end(); iter!=e; ++iter) {
430 G4double time = this->getReflectionTime(*iter);
431 if(time <= maximumTime) registerAvatar(new SurfaceAvatar(*iter, time, theNucleus));
432 }
433 ParticleList const &p = theNucleus->getStore()->getParticles();
434 generateUpdatedCollisions(particles, p); // Predict collisions with spectators and participants
435 }
436
438 ParticleList const &particles = theNucleus->getStore()->getParticles();
439// assert(!particles.empty());
440 G4double time;
441 for(ParticleIter i=particles.begin(), e=particles.end(); i!=e; ++i) {
442 time = this->getReflectionTime(*i);
443 if(time <= maximumTime) registerAvatar(new SurfaceAvatar(*i, time, theNucleus));
444 }
445 generateCollisions(particles);
446 generateDecays(particles);
447 }
448
449#ifdef INCL_REGENERATE_AVATARS
450 void StandardPropagationModel::generateAllAvatarsExceptUpdated(FinalState const * const fs) {
451 ParticleList const &particles = theNucleus->getStore()->getParticles();
452// assert(!particles.empty());
453 for(ParticleIter i=particles.begin(), e=particles.end(); i!=e; ++i) {
454 G4double time = this->getReflectionTime(*i);
455 if(time <= maximumTime) registerAvatar(new SurfaceAvatar(*i, time, theNucleus));
456 }
457 ParticleList except = fs->getModifiedParticles();
458 ParticleList const &entering = fs->getEnteringParticles();
459 except.insert(except.end(), entering.begin(), entering.end());
460 generateCollisions(particles,except);
461 generateDecays(particles);
462 }
463#endif
464
466 for(ParticleIter i=particles.begin(), e=particles.end(); i!=e; ++i) {
467 if((*i)->isDelta()) {
468 G4double decayTime = DeltaDecayChannel::computeDecayTime((*i)); // time in fm/c
469 G4double time = currentTime + decayTime;
470 if(time <= maximumTime) {
471 registerAvatar(new DecayAvatar((*i), time, theNucleus));
472 }
473 }
474 else if((*i)->getType() == SigmaZero) {
475 G4double decayTime = SigmaZeroDecayChannel::computeDecayTime((*i)); // time in fm/c
476 G4double time = currentTime + decayTime;
477 if(time <= maximumTime) {
478 registerAvatar(new DecayAvatar((*i), time, theNucleus));
479 }
480 }
481 if((*i)->isOmega()) {
483 G4double timeOmega = currentTime + decayTimeOmega;
484 if(timeOmega <= maximumTime) {
485 registerAvatar(new DecayAvatar((*i), timeOmega, theNucleus));
486 }
487 }
488 }
489 }
490
492 {
493 if(fs) {
494 // We update only the information related to particles that were updated
495 // by the previous avatar.
496#ifdef INCL_REGENERATE_AVATARS
497#warning "The INCL_REGENERATE_AVATARS code has not been tested in a while. Use it at your peril."
498 if(!fs->getModifiedParticles().empty() || !fs->getEnteringParticles().empty() || !fs->getCreatedParticles().empty()) {
499 // Regenerates the entire avatar list, skipping collisions between
500 // updated particles
501 theNucleus->getStore()->clearAvatars();
502 theNucleus->getStore()->initialiseParticleAvatarConnections();
503 generateAllAvatarsExceptUpdated(fs);
504 }
505#else
506 ParticleList const &updatedParticles = fs->getModifiedParticles();
507 if(fs->getValidity()==PauliBlockedFS) {
508 // This final state might represents the outcome of a Pauli-blocked delta
509 // decay
510// assert(updatedParticles.empty() || (updatedParticles.size()==1 && updatedParticles.front()->isResonance()));
511// assert(fs->getEnteringParticles().empty() && fs->getCreatedParticles().empty() && fs->getOutgoingParticles().empty() && fs->getDestroyedParticles().empty());
512 generateDecays(updatedParticles);
513 } else {
514 ParticleList const &entering = fs->getEnteringParticles();
515 generateDecays(updatedParticles);
516 generateDecays(entering);
517
518 ParticleList const &created = fs->getCreatedParticles();
519 if(created.empty() && entering.empty())
520 updateAvatars(updatedParticles);
521 else {
522 ParticleList updatedParticlesCopy = updatedParticles;
523 updatedParticlesCopy.insert(updatedParticlesCopy.end(), entering.begin(), entering.end());
524 updatedParticlesCopy.insert(updatedParticlesCopy.end(), created.begin(), created.end());
525 updateAvatars(updatedParticlesCopy);
526 }
527 }
528#endif
529 }
530
531 G4INCL::IAvatar *theAvatar = theNucleus->getStore()->findSmallestTime();
532 if(theAvatar == 0) return 0; // Avatar list is empty
533 // theAvatar->dispose();
534
535 if(theAvatar->getTime() < currentTime) {
536 INCL_ERROR("Avatar time = " << theAvatar->getTime() << ", currentTime = " << currentTime << '\n');
537 return 0;
538 } else if(theAvatar->getTime() > currentTime) {
539 theNucleus->getStore()->timeStep(theAvatar->getTime() - currentTime);
540
541 currentTime = theAvatar->getTime();
542 theNucleus->getStore()->getBook().setCurrentTime(currentTime);
543 }
544
545 return theAvatar;
546 }
547}
Static class for selecting Coulomb distortion.
Simple class for computing intersections between a straight line and a sphere.
#define INCL_ERROR(x)
#define INCL_DEBUG(x)
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
void setCurrentTime(G4double t)
Definition: G4INCLBook.hh:97
G4int getAcceptedCollisions() const
Definition: G4INCLBook.hh:100
G4INCL::ThreeVector getAngularMomentum() const
Get the total angular momentum (orbital + spin)
void setPosition(const ThreeVector &position)
Set the position of the cluster.
static G4double computeDecayTime(Particle *p)
ParticleList const & getEnteringParticles() const
ParticleList const & getModifiedParticles() const
FinalStateValidity getValidity() const
ParticleList const & getCreatedParticles() const
G4double getTime() const
Store * getStore() const
void setIncomingAngularMomentum(const ThreeVector &j)
Set the incoming angular-momentum vector.
void setInitialEnergy(const G4double e)
Set the initial energy.
G4double getSurfaceRadius(Particle const *const particle) const
Get the maximum allowed radius for a given particle.
void setIncomingMomentum(const ThreeVector &p)
Set the incoming momentum vector.
void setParticleNucleusCollision()
Set a particle-nucleus collision.
void setNucleusNucleusCollision()
Set a nucleus-nucleus collision.
void setProjectileRemnant(ProjectileRemnant *const c)
Set the projectile remnant.
G4double getUniverseRadius() const
Getter for theUniverseRadius.
ThreeVector boostVector() const
virtual G4INCL::ParticleSpecies getSpecies() const
Get the particle species.
G4int getS() const
Returns the strangeness number.
G4bool isMeson() const
Is this a Meson?
virtual G4INCL::ThreeVector getAngularMomentum() const
G4double getEnergy() const
ParticipantType getParticipantType() const
ThreeVector getPropagationVelocity() const
Get the propagation velocity of the particle.
void propagate(G4double step)
G4int getZ() const
Returns the charge number.
const G4INCL::ThreeVector & getPosition() const
G4bool isParticipant() const
G4double getKineticEnergy() const
Get the particle kinetic energy.
virtual void makeProjectileSpectator()
const ThreeVector & adjustMomentumFromEnergy()
Rescale the momentum to match the total energy.
G4bool isPion() const
Is this a pion?
void setINCLMass()
Set the mass of the Particle to its table mass.
const G4INCL::ThreeVector & getMomentum() const
G4bool isResonance() const
Is it a resonance?
void setEnergy(G4double energy)
std::string print() const
ThreeVector getTransversePosition() const
Transverse component of the position w.r.t. the momentum.
G4double getMass() const
Get the cached particle mass.
virtual void setPosition(const G4INCL::ThreeVector &position)
G4int getA() const
Returns the baryon number.
G4bool isNucleon() const
void storeComponents()
Store the projectile components.
static G4double computeDecayTime(Particle *p)
G4double getReflectionTime(G4INCL::Particle const *const aParticle)
Get the reflection time.
G4INCL::IAvatar * propagate(FinalState const *const fs)
G4double getTime(G4INCL::Particle const *const particleA, G4INCL::Particle const *const particleB, G4double *minDistOfApproach) const
void generateCollisions(const ParticleList &particles)
Generate and register collisions among particles in a list, except between those in another list.
StandardPropagationModel(LocalEnergyType localEnergyType, LocalEnergyType localEnergyDeltaType, const G4double hTime=0.0)
void registerAvatar(G4INCL::IAvatar *anAvatar)
void updateAvatars(const ParticleList &particles)
void generateAllAvatars()
(Re)Generate all possible avatars.
G4double shoot(ParticleSpecies const &projectileSpecies, const G4double kineticEnergy, const G4double impactParameter, const G4double phi)
IAvatar * generateBinaryCollisionAvatar(Particle *const p1, Particle *const p2)
Generate a two-particle avatar.
void generateUpdatedCollisions(const ParticleList &updatedParticles, const ParticleList &particles)
Generate and register collisions between a list of updated particles and all the other particles.
G4double shootComposite(ParticleSpecies const &s, const G4double kineticEnergy, const G4double impactParameter, const G4double phi)
void generateDecays(const ParticleList &particles)
Generate decays for particles that can decay.
G4double shootParticle(ParticleType const t, const G4double kineticEnergy, const G4double impactParameter, const G4double phi)
void clearAvatars()
Definition: G4INCLStore.cc:193
void addParticleEntryAvatars(IAvatarList const &al)
Add one ParticleEntry avatar.
Definition: G4INCLStore.cc:78
void timeStep(G4double step)
Definition: G4INCLStore.cc:168
IAvatar * findSmallestTime()
Definition: G4INCLStore.cc:142
void add(Particle *p)
Definition: G4INCLStore.cc:58
Book & getBook()
Definition: G4INCLStore.hh:259
ParticleList const & getParticles() const
Definition: G4INCLStore.hh:253
void addParticleEntryAvatar(IAvatar *a)
Add one ParticleEntry avatar.
Definition: G4INCLStore.cc:66
G4double mag() const
G4double dot(const ThreeVector &v) const
G4double mag2() const
G4bool contains(const T &t) const
ParticleEntryAvatar * bringToSurface(Particle *p, Nucleus *const n)
Modify the momentum of an incoming particle and position it on the surface of the nucleus.
G4double maxImpactParameter(ParticleSpecies const &p, const G4double kinE, Nucleus const *const n)
Return the maximum impact parameter for Coulomb-distorted trajectories.
G4double total(Particle const *const p1, Particle const *const p2)
Intersection getLaterTrajectoryIntersection(const ThreeVector &x0, const ThreeVector &p, const G4double r)
Compute the second intersection of a straight particle trajectory with a sphere.
G4double squareTotalEnergyInCM(Particle const *const p1, Particle const *const p2)
void transformToLocalEnergyFrame(Nucleus const *const n, Particle *const p)
const G4double tenPi
G4ThreadLocal NuclearMassFn getTableMass
Static pointer to the mass function for nuclei.
G4ThreadLocal ParticleMassFn getTableParticleMass
Static pointer to the mass function for particles.
G4double getLargestNuclearRadius(const G4int A, const G4int Z)
ParticleList::const_iterator ParticleIter
@ FirstCollisionLocalEnergy
Intersection-point structure.
#define position
Definition: xmlparse.cc:622