83{
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102 G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ;
103
104 G4double Energy = std::sqrt( pSquared + fMassCof );
106
107 G4double pModuleInverse = 1.0/std::sqrt(pSquared) ;
108
109 G4double inverse_velocity = Energy * pModuleInverse / c_light;
110
111 G4double cof1 = fElectroMagCof*pModuleInverse ;
112
113 dydx[0] = y[3]*pModuleInverse ;
114 dydx[1] = y[4]*pModuleInverse ;
115 dydx[2] = y[5]*pModuleInverse ;
116
117 dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field[2] - y[5]*Field[1])) ;
118
119 dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field[0] - y[3]*Field[2])) ;
120
121 dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field[1] - y[4]*Field[0])) ;
122
123 dydx[6] = dydx[8] = 0.;
124
125
126 dydx[7] = inverse_velocity;
127
130
131 EField /= c_light;
132
134 u *= pModuleInverse;
135
136 G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u);
137 G4double ucb = (anomaly+1./gamma)/beta;
138 G4double uce = anomaly + 1./(gamma+1.);
139
141
143 if (charge == 0.)
144 {
145 pcharge = 1.;
146 }
147 else
148 {
149 pcharge = charge;
150 }
151
153 if (
Spin.mag2() != 0.)
154 {
155 dSpin = pcharge*omegac*( ucb*(
Spin.cross(BField))-udb*(
Spin.cross(u))
156
157
158
159 - uce*(u*(Spin*EField) - EField*(Spin*u)) );
160 }
161
162 dydx[ 9] = dSpin.x();
163 dydx[10] = dSpin.y();
164 dydx[11] = dSpin.z();
165
166 return;
167}