Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4INCL::NNToNLK2piChannel Class Reference

#include <G4INCLNNToNLK2piChannel.hh>

+ Inheritance diagram for G4INCL::NNToNLK2piChannel:

Public Member Functions

 NNToNLK2piChannel (Particle *, Particle *)
 
virtual ~NNToNLK2piChannel ()
 
void fillFinalState (FinalState *fs)
 
- Public Member Functions inherited from G4INCL::IChannel
 IChannel ()
 
virtual ~IChannel ()
 
FinalStategetFinalState ()
 

Detailed Description

Definition at line 47 of file G4INCLNNToNLK2piChannel.hh.

Constructor & Destructor Documentation

◆ NNToNLK2piChannel()

G4INCL::NNToNLK2piChannel::NNToNLK2piChannel ( Particle * p1,
Particle * p2 )

Definition at line 51 of file G4INCLNNToNLK2piChannel.cc.

52 : particle1(p1), particle2(p2)
53 {}

◆ ~NNToNLK2piChannel()

G4INCL::NNToNLK2piChannel::~NNToNLK2piChannel ( )
virtual

Definition at line 55 of file G4INCLNNToNLK2piChannel.cc.

55{}

Member Function Documentation

◆ fillFinalState()

void G4INCL::NNToNLK2piChannel::fillFinalState ( FinalState * fs)
virtual

Implements G4INCL::IChannel.

Definition at line 57 of file G4INCLNNToNLK2piChannel.cc.

57 {
58
59 /* Equipartition in all channel with factor N(pi)!
60 */
61
62 const G4double sqrtS = KinematicsUtils::totalEnergyInCM(particle1, particle2);
63
64 const G4int iso = ParticleTable::getIsospin(particle1->getType()) + ParticleTable::getIsospin(particle2->getType());
65
66 ParticleType KaonType;
67 ParticleType Pion1Type;
68 ParticleType Pion2Type;
69
70 G4double rdm = Random::shoot();
71 particle2->setType(Lambda);
72
73 if(iso == 2){
74 if(rdm*7. < 2.){
75 particle1->setType(Neutron);
76 KaonType = KZero;
77 Pion1Type = PiPlus;
78 Pion2Type = PiPlus;
79 }
80 else if(rdm*7. < 3.){
81 particle1->setType(Neutron);
82 KaonType = KPlus;
83 Pion1Type = PiZero;
84 Pion2Type = PiPlus;
85 }
86 else if(rdm*7. < 4.){
87 particle1->setType(Proton);
88 KaonType = KZero;
89 Pion1Type = PiZero;
90 Pion2Type = PiPlus;
91 }
92 else if(rdm*7. < 5.){
93 particle1->setType(Proton);
94 KaonType = KPlus;
95 Pion1Type = PiMinus;
96 Pion2Type = PiPlus;
97 }
98 else{
99 particle1->setType(Proton);
100 KaonType = KPlus;
101 Pion1Type = PiZero;
102 Pion2Type = PiZero;
103 }
104
105 }
106 else if(iso == -2){
107 if(rdm*7. < 1.){
108 particle1->setType(Neutron);
109 KaonType = KZero;
110 Pion1Type = PiMinus;
111 Pion2Type = PiPlus;
112 }
113 else if(rdm*7. < 3.){
114 particle1->setType(Neutron);
115 KaonType = KZero;
116 Pion1Type = PiZero;
117 Pion2Type = PiZero;
118 }
119 else if(rdm*7. < 4.){
120 particle1->setType(Neutron);
121 KaonType = KPlus;
122 Pion1Type = PiMinus;
123 Pion2Type = PiZero;
124 }
125 else if(rdm*7. < 5.){
126 particle1->setType(Proton);
127 KaonType = KZero;
128 Pion1Type = PiMinus;
129 Pion2Type = PiZero;
130 }
131 else{
132 particle1->setType(Proton);
133 KaonType = KPlus;
134 Pion1Type = PiMinus;
135 Pion2Type = PiMinus;
136 }
137 }
138 else{
139 if(rdm*8. < 1.){
140 particle1->setType(Neutron);
141 KaonType = KZero;
142 Pion1Type = PiZero;
143 Pion2Type = PiPlus;
144 }
145 else if(rdm*8. < 2.){
146 particle1->setType(Neutron);
147 KaonType = KPlus;
148 Pion1Type = PiMinus;
149 Pion2Type = PiPlus;
150 }
151 else if(rdm*8. < 4.){
152 particle1->setType(Neutron);
153 KaonType = KPlus;
154 Pion1Type = PiZero;
155 Pion2Type = PiZero;
156 }
157 else if(rdm*8. < 5.){
158 particle1->setType(Proton);
159 KaonType = KZero;
160 Pion1Type = PiMinus;
161 Pion2Type = PiPlus;
162 }
163 else if(rdm*8. < 7.){
164 particle1->setType(Proton);
165 KaonType = KZero;
166 Pion1Type = PiZero;
167 Pion2Type = PiZero;
168 }
169 else{
170 particle1->setType(Proton);
171 KaonType = KPlus;
172 Pion1Type = PiMinus;
173 Pion2Type = PiZero;
174 }
175 }
176
177
178 ParticleList list;
179 list.push_back(particle1);
180 list.push_back(particle2);
181 const ThreeVector &rcol1 = particle1->getPosition();
182 const ThreeVector &rcol2 = particle2->getPosition();
183 const ThreeVector zero;
184 Particle *pion1 = new Particle(Pion1Type,zero,rcol1);
185 Particle *pion2 = new Particle(Pion2Type,zero,rcol1);
186 Particle *kaon = new Particle(KaonType,zero,rcol2);
187 list.push_back(kaon);
188 list.push_back(pion1);
189 list.push_back(pion2);
190
191 if(Random::shoot()<0.5) PhaseSpaceGenerator::generateBiased(sqrtS, list, 0, angularSlope);
192 else PhaseSpaceGenerator::generateBiased(sqrtS, list, 1, angularSlope);
193
194 fs->addModifiedParticle(particle1);
195 fs->addModifiedParticle(particle2);
196 fs->addCreatedParticle(kaon);
197 fs->addCreatedParticle(pion1);
198 fs->addCreatedParticle(pion2);
199
200 }
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
const G4INCL::ThreeVector & getPosition() const
G4INCL::ParticleType getType() const
void setType(ParticleType t)
G4double totalEnergyInCM(Particle const *const p1, Particle const *const p2)
G4int getIsospin(const ParticleType t)
Get the isospin of a particle.
void generateBiased(const G4double sqrtS, ParticleList &particles, const size_t index, const G4double slope)
Generate a biased event in the CM system.
G4double shoot()

The documentation for this class was generated from the following files: